仅给出1922年A. A. 弗里德曼提出的各向同性宇宙模型下的宇宙体积,其它模型可以见相关宇宙学的书籍。而且只有正曲率宇宙(封闭宇宙模型)才给出有限的宇宙体积,对于负曲率宇宙(开放宇宙模型)和平坦宇宙,宇宙体积都被认为是无限大。
在封闭宇宙模型中,宇宙被认为是一个四维超球:
消去坐标 ,于是宇宙中的空间距离元为:
在球坐标下为:
而 是宇宙的曲率半径,恒为正值。
如果引入“四维球坐标” ,那么距离元为:
通过对全空间的积分:
得到宇宙的体积为:
如果限制在可观测宇宙的话,可观测宇宙是个球体,直接按 算,而 代入即可,我就不算了。可观测宇宙的半径的推导见这篇文章:
如果是指整个宇宙的话,必须指定宇宙的形状(曲率)。假定宇宙学原理是正确的的(均匀且可相同)。如果曲率为 或负的话,宇宙的体积很可能是无穷大(不一定)。如果曲率为正的话,则宇宙具有有限的体积。其他答主已经给出计算过程。
一直以来认为宇宙的曲率是 (所以很多人倾向宇宙是无限大的)。最近似乎有个研究表明宇宙具有一个很小的正曲率,这暗示宇宙的体积是有限的。