百科问答小站 logo
百科问答小站 font logo



有没有对隐函数求导公式的几何理解? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

假设 满足隐函数定理的条件, 可以确定平面一段曲线;也可以理解为二元函数 的 等值线.


微分的概念本来就源自几何. 设在 点出的全微分

全微分体现了二元(多元)函数在各个分量 的增长速率 ,由线性代数知识可知,将 视为一组局部基,那么由它的线性组合一定可以生成过 处全部切方向. 有没有发现,全微分并没有指明 与 的具体关系,但又或者说,全微分蕴含了一切可能(物理学中称之为虚位移),这也某种意义上是微分形式不变性的体现,此处就不多讲了.

那么,我们所关心的隐函数一定也被蕴含其中,也就是说,曲面 上的曲线 在一点 的切方向可以线性表示为

你问我 是谁,不是别人,就是 的全微分——

那么由 可知

还没完,看看 有没有感觉到熟悉的味道,

这说明这两个向量正交. 这是怎么回事?如果熟悉梯度 的几何含义,那么这件事立刻变得明朗起来:梯度是曲面增长速度最快的方向,它与等值线(面)垂直. 因为如果曲线 只是在 上逗留,那么对于 的增长毫无贡献,也就是它在增长方向的投影分量为 0.

所以隐函数求导公式事实上讲得是梯度与等值面正交的事情.





  

相关话题

  x^y=y^x,(x<y)如果用大学知识如何解? 
  一个数介于 2 和 3 之间,那么它为无理数和有理数的概率分别为多少? 
  求极限limn→∞∫n→2n cosx/xdx? 
  如何将条件收敛级数 1-1+1/2-1/2+1/3-1/3+1/4-1/4+...证其发散? 
  二维空间有四色定理,那三维空间中存在 n 色定理吗?如果有,那么是几色定理? 
  不定积分∫ dx 中的 d 是什么意思? 
  有哪些不借助变换群的观点就很难解答的欧氏几何问题? 
  两点之间线段最短是公理吗? 
  这个东西怎么证明? 
  真的有什么式子能表示圆周率吗? 

前一个讨论
「物理的本质是数学」和「数学是物理的工具」,哪一种说法更正确?
下一个讨论
对于塞尔维亚总统亲吻中国国旗的举动,塞尔维亚人民会不会反感?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利