百科问答小站 logo
百科问答小站 font logo



面积有限的物体,周长是否有限? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

这里开一个回答,是因为有很多人举矩形的例子,但这样的构造方式是错误的。


题目的意思是:存在一个图形 ,使得 的面积是 并且 的周长是无限的。

很多人的理解是:对于任何正数 ,总存在一个面积为 的图形 ,使 的周长大于

请大家体会一下区别。



假设面积为1的矩形集合是 。他们仅仅证明了集合 中图形的周长没有上界,而并没有具体地构造出一个图形,使得这个图形的周长是正无穷。事实上,集合 中所有的图形的周长都是有限的实数。这就好像,有个数列 ,这个数列显然没有上界,但其中任何一个数都是有限的实数。


对比分形的答案。分形是一个具体的图形,它的周长是真正的正无穷。这就好像,有个数列 只有一个数 ,但 本身就是正无穷


user avatar   lljpcz 网友的相关建议: 
      

矩形的回答其实是不靠谱的,那矩型做例子只能说明面积一定的物体周长可以任意大,不能说明周长可以无穷大。

正态分布类的答案也不那么完美,因为这个图形的围道在二维欧式空间(如果不考允许单点紧化之类的操作)里不是闭曲线。(虽然题目没有严格的要求要是一个闭曲线,但这个总是怪怪的)

相比而言,分型的例子我的确一下想不到很明显的不足之处。。




  

相关话题

  退休后的数学家或物理学家通常怎么打发生活? 
  这个几何问题有什么方法吗? 
  一加一怎么等于二? 
  如何计算极限 lim(n→∞) [∫[0, n] (x^n)·e^(-x) dx]/(n!)? 
  如何看待清华 2021 年丘成桐数学领军人才招生办法,初三生可报名申请,期间不得转专业? 
  数学家尤其是现代数学家对于哲学的主流态度有哪些? 
  如何看待全民代数几何的现象? 
  请问数学上有哪些令人赞叹的,简洁的名言或者结论? 
  有哪些有趣而著名的悖论? 
  纯数学是否可以转化为生产力从而造福社会? 

前一个讨论
两数列合并后有什么性质?
下一个讨论
思考一个问题,任意给定一个非零有理数和一个无理数,能否通过加减(可以无限次)使极限收敛到整个实数集?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利