百科问答小站 logo
百科问答小站 font logo



如何证明每一个有穷的偏序都可以延拓成一个线序? 第1页

  

user avatar   feng-kuang-shen-shi-92 网友的相关建议: 
      

这题有人已经回答了,先说一下证明的思路,即用数学归纳法即可以证明。

有穷的偏序可以转化成一个线性表达,在具体学科中有运用。

1、扯蛋模型

扯蛋模型的例子如上。

分子结构是一个典型的拓扑,是偏序可以表达的。通常的分子模型是叫球棍模型,把球表示成原子,棍子表示成化学键。

如果把棍子换成一个弹簧,整个模型就变成了弹簧球模型。

考虑到该模型只能扯动球,而不能扯动线,因此被几个院士戏称为扯蛋模型。

2、smils格式就是线序

Smiles 是一种线性格式 如C12=CC=CC=C1C3=C(C=CC=C3)C=C2

这种线性格式可以表达一个复杂的拓扑,而拓扑可以用偏序来表示。

3、偏序与拓扑排序

偏序画出层次化的哈斯图后,从上往下一层层数下来就是一个拓扑排序,就是线序。

上面是计算地址,以及已有的运用类的论文范本。




  

相关话题

  实数域上的连续函数f,存在一个有理数a和一个无理数b使得a与b均为f的周期。如何证明f为常值函数? 
  如何通俗地理解「韦达跳跃」,如何证明? 
  以数学史的观点来看,集合论是如何成为数学基础的? 
  若 A={x, x∉A},那么 A 是 ∅ 吗? 
  当我们说一个定理可以推出另一个定理的时候, 我们在说什么? 
  如何证明 2 的平方根不是有理数? 
  若1+1=2,则雪是白色的,这是真命题吗? 
  这个猜实数的游戏有没有必胜策略? 
  为什么规定 0 的阶乘为 1? 
  数学归纳法是不是「流氓」方法? 

前一个讨论
如何解释探索性因素分析?
下一个讨论
李吟是谁?





© 2025-06-19 - tinynew.org. All Rights Reserved.
© 2025-06-19 - tinynew.org. 保留所有权利