百科问答小站 logo
百科问答小站 font logo



复变函数如何进行映射? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

复变平面有三大变换:

  • 莫比乌斯变换
  • 多项式变换
  • 指数变换

其中莫比乌斯变换为

特别地,当 时,我们称之为关于单位圆的共轭反演

反演有很明晰的几何意义,我们展开谈谈。见下图


如图, 、 、

由射影定理可得

此时我们称 与 为关于 互为反演点。特别地,当 半径为单位长度时,显然 与 互为倒数,这不得不让我们联想到共轭反演变换,不过还需一点加工。

由欧拉公式

那么

看得出,复数 经过共轭反演后,模长变为其倒数,幅角变为其相反数。也就是说,我们在复平面 上若想找到 的共轭反演点,可以按照上述的几何方法找到其反演点 ,然后再取共轭即可。这就是我们将倒数变换命名为共轭反演的原因。

综上,一个莫比乌斯变换可以机械地分解为若干个简单的变换的复合,他们分别是:旋转、伸缩、平移、共轭反演。这从表达式中可以清楚地看出,

莫比乌斯变换最重要的性质就是保圆性,旋转、伸缩、平移、共轭的保圆性不多用说,所以最关键是说明反演的保圆性。

题主所问的是上面的特例, 经共轭反演后为

需要特别说明的,凡经过反演中心的圆,会被映射为直线,但是我们认为直线是半径无穷大的圆。




  

相关话题

  如何理解「观点越高,事情越显得简单」这句话? 
  数学、自然科学史上为什么会有那么多巧合?比如牛顿莱布尼茨同时发明微积分等? 
  高一新生看欧几里得的几何原本好还是希尔伯特的几何基础好? 
  一个半径为10的大圆能剪出几个半径为1的小圆? 
  数学为什么没有列在四大天坑专业中? 
  研究了一辈子学问却发现研究的方向错了,或当前流行的理论错了,你会有怎样的感想?你会怎样做? 
  对于高数以及更加高深的数学学习者来说,你们是如何思考并想象数理问题的? 
  这个复数等式的「疑难」如何解决? 
  怎么比较 33 的 11 次方与 17 的 14 次方的大小关系? 
  高中生物中讲存在单层和双层膜细胞器,那么单双层膜怎么区分?理论依据(数学和生物学的依据最好)有哪些? 

前一个讨论
有哪些神奇的级数求和?
下一个讨论
在线性代数中如何用几何表示非方阵矩阵相乘?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利