百科问答小站 logo
百科问答小站 font logo



高等数学中学泰勒公式,感觉几何意义很模糊,怎么理解? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀.


分析层面的就交给其他大神讲吧,我从多项式空间的角度讲讲:

设 是 上次数不超过 n 次的多项式空间. 每个多项式都可以表示为 中一个点,比如——

考虑微分算子 在上面这组基下的矩阵:

因为

于是

熟悉 Jordan 矩阵的人自然会考虑另外一组基:

在这组基下的微分算子的矩阵:

因为

所以

更一般地,若考虑空间 的微分算子有:

而对于 Jordan基 ——

还没完,继续利用多项式 ,

我们看矩阵的每一列(行),都是泰勒各阶展开,而对于一般的 n 次可微函数的 Taylor 展开, 只是对上面思想的一种推广:将一个解析函数用空间的一组 Jordan 基来分解.


怎么样,是不是感觉更模糊了……



由于良心的愧怍,我觉得我应该再解释解释:

由上面的分析可知,Taylor 展开实际上是对一个 n 次可微的函数的一种分解,那么有人会问——

分解只有这么一种方式吗?


当然不可能只有一种分解方式,每当我们找到一组不同的基,就能找到一种分解方式。于是紧接着问——


既然有那么多的基可供选择,那么选择 Jordan 基来分解有什么特别的好处?


其实我的回答一开始就已经显露出 Jordan 基的优点了。学过高等代数就知道 Jordan 基的优越性,它可以将任一个线性变换(矩阵)庖丁解牛般地分解为准对角矩阵(如果矩阵可对角化,那就是对角矩阵),一个线性变换的全部信息将如初出浴之美人一览无余:它的秩是多少,谁是它的特征向量、准特征向量,它的象空间是如何被直和分解为若干不变子空间的……这些它都可以回答。当然,最重要的是简洁而有效,Jordan 矩阵的计算实在太友好了,算过矩阵的人都明白她的好。

如果用的是其他的基来分解,你很难想象 f(x) 的各阶导数如后宫佳丽般款款而立,教郎恣意怜(为所欲为)吗?不会,等待你的往往是一个极其复杂、毫无无意义、丑陋的






……矩阵。




  

相关话题

  为什么说0.1的有效数字是1?小数点前的零确实有实际意义啊? 
  一道较难的极限题,如何求解? 
  如果从图中移去一个边的一个集合将增加亚图的数目时,被移去的边的集合就成为截。”那么,亚图是什么?截呢? 
  怎么反驳:10元=100毛=10毛X10毛=1元X1元=1元? 
  有没有碰到过可以通过建立物理模型且运用了物理基本原理来得到解析解的数学题? 
  我在网上淘到一本1930年的数学论文,微分几何方面的,作者DAN SUN,不知哪位大神给证实一下? 
  泊松换元公式有直接用二重积分换元而不变为曲面积分的方法吗? 
  二十世纪以来最牛的数学家(Grothendieck这种级别的)都有谁,你最崇拜谁,为什么? 
  设光速为1那么我的飞船(小滑块)达到0.9的循环,是否能代表我达到了光速? 
  什么是泊松过程? 

前一个讨论
请问为什么无穷个无穷小量的乘积不一定是无穷小量?
下一个讨论
高等数学里的概念和定义,为什么不能再简单些呢?





© 2025-05-30 - tinynew.org. All Rights Reserved.
© 2025-05-30 - tinynew.org. 保留所有权利