百科问答小站 logo
百科问答小站 font logo



600 个人站一排,每次随机杀掉一个奇数位的人,几号最安全? 第1页

  

user avatar   ling-jian-94 网友的相关建议: 
      

修正之后的结论:存活回合数期望最大的应该是2,但最可能成为最后一个存活的人的是600。

我们来研究M个人杀N次的情况下,每个位置被杀的概率。

可以用递推法计算。首先2个人杀一次的情况下,2一定是最好的,,。M个人杀一次的情况下,偶数被杀概率为0,奇数被杀概率相等:,

考虑M+1个人杀N+1次的情况,则很容易得到:

我们定性分析一下这个式子,无论奇数还是偶数,都从(M,N)的情况中,继承自己和前一项的“阵亡”概率,同时补上自己是奇数(有被杀概率)或者是偶数(无被杀概率)的修正值。k越小,前一项加权越小,后一项加权越大。奇数项有额外的加成。这样,k比较小的情况下,奇数项和偶数项的差异越来越大;而k越大,由于前后两项平均、甚至前项比例超过后项的效果,奇数项和偶数项的差距变得越来越小。

迭代下去的结果大致是一个上下波动然后衰减的样式:1的被杀概率最大,2最小,3又变大但小于1,4又变小但大于2,依次类推。M和N都比较大的时候,靠后位置的奇数位置、偶数位置差异变得很小,因为它们经常相互转换。而1永远是奇数;2只有很小的概率会转换成1。N越大,存活概率的绝对值都变小,但存活概率与前后位置的关系变得更大,2的相对安全优势也越明显。如果考虑最后一个存活的人的比例的话,N很大的情况下,2的优势会很明显。

====================================================================

事实证明全凭臆想是不好的……这里忽略了一件事,一开始在2,和最后几轮在2,意义是完全不同的。一开始奇数多,每个奇数被杀概率比较小,而最后几轮被杀概率严重提高,而一开始在2的,很容易就滑到1去了。还是老老实实算一下递推式……

存活概率:

杀至最后一人的存活概率。这也太直了吧!

但其实并不是完美直线,而是奇数偶数一组跳变的,1的存活概率是0,(2,3)的存活概率几乎一样,(4,5)的存活概率几乎一样,依次类推,所以最后存活概率最大的是600,它存活的概率几乎就是1/300。

实际上似乎有

我们代回去检验一下:

这提示我们也许应该用存活概率来表示递推式,改写一下,用Q(k; M, N)来表示存活概率:

的确可以去掉那个常数项,改写成齐次的递推式。

在N不为M-1的时候,得到的结果跟之前的分析基本一致(Q(600,300)):

(0实际上是1)

当N增大的时候,这个图也有变化,下图是Q(600,500):

最安全的已经不是2了,而是向后移动,但并没有移动到非常远的地方。

进一步增大的时候(Q(600,550)):

中间大部分地方都变平了,但是注意看那个尾巴,会下降一些,原因不明,但应该不是计算误差,因为随着N增大,这个尾巴变得越来越明显,以至于到599的时候,尾巴变成了整条直线。

更有趣的是这个尾巴的朝向跟N的奇偶性密切相关(Q(600,551)):

尾巴变成向上了。

N接近于599的时候:

Q(600,595)

波动越来越不明显,而尾巴越来越明显。

Q(600,596)

Q(600,597)

Q(600,598)

变成了一个这样的奇怪曲线……

然后599就突变成了直线。只能说,数学真是太奇妙了。

附Python代码:

       def fr(a,b = None):     if b is None:         return a     else:         return float(a) / float(b)  # Uncomment the following line to use fractions  # from fractions import Fraction as fr           def cal_p(m, n):     P = [fr(0)] * (m - n + 1)     for M in range(m - n + 1, m + 1):         P2 = [0] * (M+1)         half = (M + 1) // 2         P.append(fr(0))         for i in range(1, M + 1):             if i % 2 == 0:                 P2[i] = fr(i // 2, half) * P[i-1] + fr(half - i//2, half) * P[i]             else:                 P2[i] = fr(1, half) + fr(i // 2, half) * P[i-1] + fr(half - i//2 - 1, half) * P[i]         P = P2     return P  import matplotlib.pyplot as plt      def plot_q(M,N):     P = cal_p(M,N)     q = [1.0 - p for p in P[1:]]     plt.figure()     plt.plot(q)     plt.show()       

如果考虑存活回合数的期望值的话,由于N很大的时候存活概率本身就比较小,最后的确应该是2的平均存活回合数比较有优势吧。

解释一下当N比较大的时候,为什么随着N的奇偶性变化,最后一段的概率忽大忽小呢?

因为我们的M = 600是个偶数,当杀奇数人的时候,最后一轮排在最后一个位置的人不会被杀,而杀偶数人时,最后这一轮排在最后一个位置的人可能被杀,而就是这一点点差别导致了差异;杀奇数人时,最后一段很容易成为最后一个人,所以存活概率变大了,在杀599人的时候,甚至这是唯一的存活可能性;杀偶数人时,反而是成为倒数第二个人比较划算,所以最后一小段反而概率下降了。

猜一猜,598那个曲线的极值点在什么位置?

在[0,600]的黄金分割点上。


user avatar   xing-xing-1-13 网友的相关建议: 
      

做款海报咯:


(制作素材来源于付费网站)


user avatar   tk0511 网友的相关建议: 
      

中国的平头老百姓是啥都不懂的、啥都做不了的、啥都不想做的贱民吗?

英雄的老百姓关心美国,因为它就横亘在面前。

“Because it's there.”

因为山就在那里,所以英雄的老百姓就想征服一下呐,人类的天性而已,家畜或许不能理解。


全世界所有厉害的东西,中国的平头老百姓都关心:上至国际空间站,卡西尼,奥陌陌,旅行者;下至下水道油布包,煮饭仙人,圆珠笔尖,还有猛禽,幽灵,高精狙,福特号,电磁炮,可燃冰,盾构机,大豪斯,大牛排,电瓶车,鸟语花香,老虎大象,GPS,NMD,M1p,RTX,诺贝尔,太平洋。

我想要的不多。你给不了,我就自己想办法。

不允许吗?




  

相关话题

  数学系学生在学习中应该在多大程度上检查大证明的细节逻辑? 
  nπ-[nπ]是否存在收敛于0的子列? 
  集合论与微积分? 
  为什么数学中“有且仅有”不可以说成“仅有”? 
  如何做出 2π 分熟的牛排? 
  会不会某个人已经证明了哥德巴赫猜想,却不愿意讲出来? 
  空间中有多于一个的同种(比如都是正电荷)点电荷,如何说明此时一定有一点电场强度为0? 
  什么是狄利克雷分布?狄利克雷过程又是什么? 
  在三角形abc中,∠B=90°,点D在边BC上,∠BAD=2∠C,AC=12,DC=8求AB? 
  这个图形的面积是多少? 

前一个讨论
DDR5 时代的 PC 性能将有多少提升?
下一个讨论
如何评价 6 月 7 日召开的 2021 苹果全球开发者大会(WWDC21),有哪些值得关注的内容?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利