百科问答小站 logo
百科问答小站 font logo



微积分咋用洛必达法则求极限(((x+1)^(1/x)*(1+1/x)^x)-4)/(x-1)^2呢? 第1页

  

user avatar   PandoraEartha 网友的相关建议: 
      

公式经过人工排版

"助力每一个(不知死活的)梦想"


原公式

egin{align}& ext{该回答由算法自动生成}\\A&=limlimits_{x o1}frac{{left(frac{1}{x}+1 ight)}^x,{left(x+1 ight)}^{1/x}-4}{{left(x-1 ight)}^2}\&=limlimits_{x o1}frac{left(lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^x-frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x} ight),{left(x+1 ight)}^{1/x}+{left(frac{1}{x}+1 ight)}^x,left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^2} ight)}{2,x-2}\&=limlimits_{x o1}frac{2,left(lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^x-frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x} ight),left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^2} ight)-{left(frac{1}{x}+1 ight)}^x,left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x^2}-frac{left(frac{1}{x}-1 ight),{left(x+1 ight)}^{frac{1}{x}-2}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{frac{1}{x}-1}}{x^2}}{x}+frac{lnleft(x+1 ight),left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^2} ight)}{x^2}+frac{{left(x+1 ight)}^{1/x}}{x^2,left(x+1 ight)}-frac{2,lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^3} ight)+{left(x+1 ight)}^{1/x},left(lnleft(frac{1}{x}+1 ight),left(lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^x-frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x} ight)-frac{lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^{x-1}-frac{{left(frac{1}{x}+1 ight)}^{x-2},left(x-1 ight)}{x^2}}{x}+frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x^2}-frac{{left(frac{1}{x}+1 ight)}^x}{x^2,left(frac{1}{x}+1 ight)} ight)}{2}\&=4,lnleft(2 ight)-3end{align}




  

相关话题

  这个数列的极限怎么求? 
  这道极限题怎么做?会不会是题目有问题吗? 
  如何计算可观测宇宙的大小? 
  如何对 0,0,0,0 进行运算得到 24? 
  如何算出这个求和式子结果等于 (2n)!!/(2n+1)!! ? 
  为什么经济学中要采用“边际”的概念,而不是直接用微积分中术语来表达? 
  二重积分经过变量变换后,为什么原有闭区域的边界点也是新区域的边界点? 
  这道题应该怎么处理? 
  怎样构造一个函数(数列)有无穷多处趋近无穷?感谢? 
  这个9题不等式右边怎么证明呢? 

前一个讨论
你对游戏《原神》中最无感的角色是哪个?
下一个讨论
此极限应该怎么计算?





© 2025-06-25 - tinynew.org. All Rights Reserved.
© 2025-06-25 - tinynew.org. 保留所有权利