百科问答小站 logo
百科问答小站 font logo



微积分咋用洛必达法则求极限(((x+1)^(1/x)*(1+1/x)^x)-4)/(x-1)^2呢? 第1页

  

user avatar   PandoraEartha 网友的相关建议: 
      

公式经过人工排版

"助力每一个(不知死活的)梦想"


原公式

egin{align}& ext{该回答由算法自动生成}\\A&=limlimits_{x o1}frac{{left(frac{1}{x}+1 ight)}^x,{left(x+1 ight)}^{1/x}-4}{{left(x-1 ight)}^2}\&=limlimits_{x o1}frac{left(lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^x-frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x} ight),{left(x+1 ight)}^{1/x}+{left(frac{1}{x}+1 ight)}^x,left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^2} ight)}{2,x-2}\&=limlimits_{x o1}frac{2,left(lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^x-frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x} ight),left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^2} ight)-{left(frac{1}{x}+1 ight)}^x,left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x^2}-frac{left(frac{1}{x}-1 ight),{left(x+1 ight)}^{frac{1}{x}-2}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{frac{1}{x}-1}}{x^2}}{x}+frac{lnleft(x+1 ight),left(frac{{left(x+1 ight)}^{frac{1}{x}-1}}{x}-frac{lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^2} ight)}{x^2}+frac{{left(x+1 ight)}^{1/x}}{x^2,left(x+1 ight)}-frac{2,lnleft(x+1 ight),{left(x+1 ight)}^{1/x}}{x^3} ight)+{left(x+1 ight)}^{1/x},left(lnleft(frac{1}{x}+1 ight),left(lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^x-frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x} ight)-frac{lnleft(frac{1}{x}+1 ight),{left(frac{1}{x}+1 ight)}^{x-1}-frac{{left(frac{1}{x}+1 ight)}^{x-2},left(x-1 ight)}{x^2}}{x}+frac{{left(frac{1}{x}+1 ight)}^{x-1}}{x^2}-frac{{left(frac{1}{x}+1 ight)}^x}{x^2,left(frac{1}{x}+1 ight)} ight)}{2}\&=4,lnleft(2 ight)-3end{align}




  

相关话题

  这个复杂杂积分怎么求? 
  实系数多项式之所有根为实数,如何证明其相应 n 阶导数之所有根为实数? 
  同济版《高等数学》有什么缺陷? 
  这个定积分该如何做? 
  这个类似卷积的函数极限怎么证明? 
  e^(-x)|sinx|在(0,+∞)与x轴围成的面积怎么算? 
  已知若干个独立同分布的随机变量之积的分布,如何求单个随机变量的分布? 
  请问这个积分怎么做? 
  请问二重积分的换元法中,雅克比矩阵是怎么转化成雅克比行列式的? 
  求极限lim(1/(3^1+1)+1/(3^2+1)+...+1/(1+3^n))? 

前一个讨论
你对游戏《原神》中最无感的角色是哪个?
下一个讨论
此极限应该怎么计算?





© 2025-05-09 - tinynew.org. All Rights Reserved.
© 2025-05-09 - tinynew.org. 保留所有权利