百科问答小站 logo
百科问答小站 font logo



有哪些教科书上的科学概念或原理,只看文字很难理解,用视频展示却很清晰? 第1页

  

user avatar   zhu-wang-xiao-miao-o 网友的相关建议: 
      

虽然自己长大后没有选择学习物理专业吧,但我小时候还是很喜欢物理的,可能是被高中物理题虐的太惨了,所以大学才投奔了计算机专业。

记得那个时候学习物理知识以及看科普书时,有很多问题都让我困惑,不过最难以想象的科学概念还是高维空间这个概念,除了在纸上写下 这种代数形式来描述四维空间以外,似乎对其在想象上就理解困难了,不过那个时候也没想着细究。

大学后读到了《三体》,其中对于四维空间的描述让我又燃起了兴趣,自己也找了一些资料来查阅。例如我曾经写过这个答案:人类到了四维空间会怎么样?,里面就表达了一些我自己的猜想。

之后我在brilliant这个网站上看到了一部讲述高维空间的科普视频,感觉里面的视角很独特,举了一些有趣的例子,让我记忆至今,对于高维度的解释也展示却很清晰。

我在文末会放上视频,不过我想先自己讲述一下这个有趣的例子。

例如,对于如下图所示,在坐标系中一个边长为 的正方形:

以它的四个顶点为圆心,画四个半径为1的圆:

现在我们考虑一个圆心在原点,且与这四个圆均外切的圆,它应该是下面这个样子:

现在考虑一下,以原点为圆心的这个小圆的半径是多少呢?

很简单,是 ,也就是四分之一正方形的对角长度 减去大圆的半径 。

接下来考虑一个边长为 的正方体的情况:

在其八个顶点画八个球,然后找以原点为圆心,与这个八个球都外切的球

这个球的半径是多少?

答案是:

接下来推导一个一般的情况:

对于一个N维的点 ,点 到原点的距离为

那么在N维空间中,以其立方体原点为中心构成的外切中心图形的半径就应该为:

四维的时候呢,就应该是 ,换句话说就是,中心球的大小和角落球的大小是完全一致的。

换到十维的时候看看,中心球的半径应该是 ,这个时候中心球的半径已经超过这个立方体的边长了,且中心球半径是角落球半径的两倍多。

根据计算,中心球在立方体内的面积会随着空间维数的增加,会呈指数式递减至0。

这只是高维空间性质的一个有趣之处,也会更形象的让我们去思考其余的高维度性质。

视频中还阐述了一些有趣的想法,我就不多讲述了,直接放上视频好了。

以上,谢谢⭐~




  

相关话题

  吉林四海湖出现「冰汤圆」湖面,网友直呼太应景,这一景观是如何形成的? 
  15岁的男生手机保存大量男同视频,做父亲的该怎么办? 
  如何看待「四川仁寿一老师被学生用砖头猛打头部」一事,如何避免类似事件发生? 
  1999年保密协议是什么梗?真有此事? 
  为什么嫦娥五号的返回器身上贴满了暖宝宝? 
  前沿的科学研究需要被大众化科普吗?如何把握「大众化」的程度? 
  你知道有哪些备受争议的健康常识? 
  我的弟弟相信了「科学的尽头是佛学,一切的科学都是为了佛学」,我该怎么改变他? 
  民科与科学的界限在哪? 
  安商洪上帝教会是邪教吗?如何救女朋友出来? 

前一个讨论
当下高校学生的悲剧频现,如何给自己规划一条退路?
下一个讨论
动物界为什么没进化出轮子一样的行走器官?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利