百科问答小站 logo
百科问答小站 font logo



三位物理学家与陶哲轩发现的特征向量全新求解公式,会给机器学习领域带来怎样的变化? 第1页

  

user avatar   han-yong-71-12 网友的相关建议: 
      

不知道会不会给机器学习领域带来什么大的影响,但公众号明显标题党了,“颠覆数学常识”,言过其实。

Update: 甚至于这个定理也不算什么新的结论。 大佬@张戎 指出国内教科书上都有,参考这个回答

所以还是媒体为了吸引眼球


首先这个公众号贴出来的“新公式”是对于 的Hermitian矩阵 成立的,计算的是:

特征值 对应的特征向量的 个元素的平方

分母是 减去 的两个剩下的特征值然后乘起来;分子是 减去 去掉第 行和第 列之后剩下的 的矩阵的两个特征值 和 ,然后再乘起来。

是 的Hermitian矩阵时的计算方法同理。

具体用它来算特征向量的例子请参考 @位空 的这篇回答

如何评价陶哲轩的EIGENVECTORS FROM EIGENVALUES? - 位空的回答 - 知乎

所以,

1、这个定理对矩阵有要求,在实际应用中可能会有不少限制。

2、这个方法算出来的是特征向量每个分量的绝对值,相位计算也可以给出,但是很麻烦,参考这位答主的回答:


3、求n阶矩阵的特征向量需要已知所有n个特征值,还有删掉某行某列之后的n-1xn-1阶矩阵的所有特征值。对一般的情况下,计算复杂度可能会较高。

4、至于考研算特征向量,还是算了吧。给你一个比如4x4矩阵,你为了算某个特征值下面的特征向量,你需要一个一个元素去算,算出来还不知道正负,还得折腾算相位。然后针对这个元素你还需要求出来去掉这一行这一列之后的3x3矩阵的三个特征值。所以...计算量只会增不会减

PS:量子位公众号有点标题党了,以及文章里贴出来的证明过程也没好好整理。实际上原文paper

贴出来给出了两种证明方法,一种给出一个Cauchy-Binet类型的行列式公式作为引理,构造式证明方法比较巧妙。第二种证明是借用了伴随矩阵的思路(毕竟删除某行某列就跟伴随矩阵的操作类似嘛)。陶神还是太强QAQ,两个小时给出三种证明方法,虽然论文只给出来两种。




  

相关话题

  能用高等数学手段研究人文社科问题吗? 
  知识图谱+nlp,有什么适合硕士独自研究的方向? 
  如何入门 Yamabe 问题? 
  机器学习专家与统计学家观点上有哪些不同? 
  如果把行列式定义中的(-1)^(逆序数)去掉,这种新的运算能用在哪里呢? 
  为什么要引入矩阵这个数学工具?它能简化哪些不用矩阵会复杂的问题? 
  如何能够快速恢复脑力? 
  NLP领域,你推荐哪些综述性的文章? 
  哪些看似毫不相干的事物具有相同的数学原理? 
  孩子的梦想是成为天文学家,怎样帮助他去接近梦想? 

前一个讨论
C 语言执行 a=a++; 后,a 的值应该加一还是不变?
下一个讨论
怎样评价 LOL 选手 LWX 获得冠军后的评论?





© 2025-03-25 - tinynew.org. All Rights Reserved.
© 2025-03-25 - tinynew.org. 保留所有权利