百科问答小站 logo
百科问答小站 font logo



为什么nn的较大问题是会陷入局部最优时,不选用凸函数作为激活函数? 第1页

  

user avatar   filestorm 网友的相关建议: 
       @li Eta

答得很好。

关于第一点

为什么陷入局部最优,根本不是NN的问题

貌似并没展开说。我正好得空,补充一下

大家以前认为,deep learning的loss的形状会是布满弹坑的样子:


于是,梯度下降到local minimum如果不是global minimum就出大问题了。




但其实对于deep learning,我们是在一个非常高维的世界里做梯度下降。这时的 local minimum 很难形成,因为局部最小值要求函数在所有维度上都是局部最小。更实际得情况是,函数会落到一个saddle-point上,如下图:



在saddle-point上会有一大片很平坦的平原,让梯度几乎为0,导致无法继续下降。

反倒是local/global minimum的问题,大家发现其实不同的local minimum其实差不多(反正都是over-fitting training data,lol)

推荐阅读Bengio组的这两篇:

On the saddle point problem for non-convex optimization

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization




  

相关话题

  拓扑学究竟是是一种什么样的学科? 
  一些人为什么会去选数学专业? 
  所有整数都能用20个以内的汉字表达出来吗? 
  机器学习里面的流形都是怎么用的? 
  数学能取代人类语言吗? 
  为什么有些数学系学生会瞧不起 CS(计算机)系学生? 
  将来医院哪个科室医生最容易/不容易被人工智能取代? 
  如何证明1的pi次方等于1? 
  概率论两个事件独立的定义是P(AB)=P(A)P(B),可以理解是A B两个事件互相不影响吗? 
  为什么不能用 0 做除数? 

前一个讨论
in memory computing 存内计算是学术圈自娱自乐还是真有价值?
下一个讨论
现在互联网公司还有做特征工程的工作吗?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利