百科问答小站 logo
百科问答小站 font logo



凸分析和凸优化有什么推荐的教材吗? 第1页

  

user avatar   zhou-long-fei-91 网友的相关建议: 
      

泻药@王哲

一句话概括的话,凸分析主要研究凸集和凸函数的各种拓扑和分析性质,凸优化研究凸问题的最优性条件,设计求解算法并分析其迭代复杂度和计算复杂度。

好专著通常出自这两个领域的大师。记住这些凸分析和凸优化大师的名号:R. T. Rockafellar,Hiriart-Urruty,A Nemirovski ,Y. Nesterov, Yinyu Ye(叶荫宇)...更多的看 John von Neumann Theory Prize 历年获奖的大师名单。当然,也不能排除一些非top-class的数学家写作技巧很好,写的入门级教材图文结合,形象易懂(嗯,我这里指的主要是Y. Nesterov的论文很难读).....


入门级

S. Boyd and L. Vandenberghe. Convex Optimization [M]. Cambridge, 2004.

Güler O. Foundations of Optimization[M]. Springer New York, 2010.

Bahlak S, Gazalet J, Lefebvre J E, et al. Convex Optimization: Algorithms and Complexity[J]. Foundations & Trends® in Machine Learning, 2014, 8(3-4):231-357.


进阶版

A Nemirovski 个人主页上一系列的凸优化的slides

Ben-Tal A, Nemirovski A. Lectures on modern convex optimization[M]. SIAM, 2001.

Hiriart-Urruty J B, Lemaréchal C. Fundamentals of Convex Analysis[M]. Grundlehren Text Editions, 2004, 24(2):288-294.

R. T. Rockafellar. Convex Analysis[M]. Princeton, 1970.

Hiriart-Urruty J B, Lemaréchal C. Convex analysis and minimization algorithms[M]. Springer-Verlag, 1993.

Nesterov Y. Introductory Lectures on Convex Optimization[M]. Springer, 2014.


内点算法

Nesterov I E, Nemirovskiĭ A S. Interior Point Polynomial Algorithms in Convex Programming[M]. SIAM, 1994.

Ye Y. Interior point algorithms: theory and analysis[M]. John Wiley & Sons, Inc. 1997.

Wright S J. Primal-dual interior-point methods[M]. SIAM, 1997.

Roos C, Terlaky T, Vial J P. Interior Point Methods for Linear Optimization[M]. Springer, 2006.


如果不读博士做理论研究,好像基本上也不需要凸分析了;学术圈子里认真待个两三年,主动去了解这个领域,这些大师的名字会反复出现在论文和参考文献里,读读他们的专著就很有必要了...当然还有很多大牛,他们只写论文,没空写专著的,这时候就应该好好读论文了...




  

相关话题

  所谓大数据分析,究竟要学什么? 
  如何证明对任意给定的正数e,存在M上的矩阵范数||A||,满足不等式||A||<=谱半径+e? 
  《人工智能训练师国家职业技能标准》发布,有哪些值得关注的信息? 
  如何评价余凯创立的horizon robotics? 
  《失控玩家》中的游戏有可能实现出来吗? 
  在集成电路设计领域(数字,模拟),人工智能有无可能取代人类? 
  时间序列和回归分析有什么本质区别? 
  有哪些深度学习效果不如传统方法的经典案例? 
  机器学习在Web攻击方向有什么建树吗? 
  如何评价B站UP主未明子宣称“知乎搞机器学习模拟拉康的程序员”具备“头脑上的悲剧”? 

前一个讨论
《仙剑奇侠传》系列游戏中有哪些细思极恐的细节?
下一个讨论
没有基的线性空间,是否可以构造,如何构造?





© 2025-02-22 - tinynew.org. All Rights Reserved.
© 2025-02-22 - tinynew.org. 保留所有权利