百科问答小站 logo
百科问答小站 font logo



现在的BERT等语言模型,最快训练要多久? 第1页

  

user avatar   su-jian-lin-22 网友的相关建议: 
      

首先明确一个结论:预训练成本基本上是不可能降的。

怎么理解这句话呢?大概就是说你要达到RoBERTa base的效果,那么就必须付出大致相当于训练RoBERTa base的算力,就算你把Self Attention换成CNN、RNN、MLP都是这样,因为Transformer之所以慢,是因为它大,而不是因为它有Self Attention(参考《线性Transformer应该不是你要等的那个模型》);而预训练模型效果之所以好,是因为它在大模型的基础上预训练,所以大是必要条件。

有了这个结论后,你想提高训练速度,就只有三个选择:1、选择更小的模型(比如small、tiny);2、买更快的卡(比如80G的A100);3、减少训练数据。

前两者好理解,第三个选择,主要是因为预训练数据到了一定数量之后,“质量”就重于“数量”了,如果别人用100G通用数据训练,你能挑出10G高质量数据训练,速度就快了10倍,说不准效果还更好。这个“高质量”有两个含义,第一个是数据本身的噪声要少,第二个就是跟你所要做的下游任务的相关性。这方面的工作,推荐看杨植麟大佬最近的《NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework》

当然,框架本身的调整(比如混合精度训练)也能带来一定的速度提升,但这不在本回答的考虑范围内(或者说,框架本身的优化默认都打开)。




  

相关话题

  怎样衡量一个机器学习工程师对算法的掌握程度? 
  贝叶斯深度学习是什么,和传统神经网络有何不同? 
  让人工智能去下路边街头的象棋残局会赢吗? 
  单bert可以用来做文本相似度计算任务吗? 
  如何把梯度传递过Argmax? 
  可以对只有一个像素的图片拥有版权或著作权吗?为什么? 
  如何看待Yoav Goldberg 怒怼来自MILA的GAN for NLG的paper? 
  ICLR 2022有哪些值得关注的投稿? 
  如何评价贾扬清离职 Facebook? 
  隐马尔可夫模型在金融领域应用前景如何? 

前一个讨论
你见过哪些怪异的量化交易策略?
下一个讨论
有哪些效果拔群的 WebAssembly 应用?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利