百科问答小站 logo
百科问答小站 font logo



如何评价 MSRA 最新的 Deformable Convolutional Networks? 第1页

  

user avatar   tang-xu-60-83 网友的相关建议: 
      

蹲个马桶的功夫来总结下这篇论文。


目前已有的三篇讲这篇deformable convolution network的文章:

1.

mp.weixin.qq.com/s/OETZ

2.

mp.weixin.qq.com/s/Ulu8

3.

mp.weixin.qq.com/s/okI3

一如既往的Jifeng Dai的work,继承了STN,刚花了一个下午看完这篇论文,很novel的工作,共同作者是msra的实习生们。

第一篇文章有句很生动的概括:“文章通俗的说法就是,图片中的物体形状本来就是千奇百怪,方框型的卷积核,即使卷积多次反卷积回去仍然是方框,不能真实表达物体的形状,如果卷积核的形状是可以变化的,这样卷积后反卷积回去就可以形成一个物体真实的多边形,更贴切的表达物体形状,从而可以更好的进行像素分割和物体检测。”

这张图可以很明显看出方法的有效性,每个三列的图中,左边是背景上的点对应的激活它的点(感受野),可以看出是覆盖天空的背景的。中间一列对应的是小物体,反向回去对应的激活点是几乎覆盖小物体上所有区域,同理右边那列对应大物体。

几个值得注意的地方:

1. 2.3一开头那几句讲解如何初始化deformable的部分。


2.主要是在一些detection和segmentation的task上取得了进步。后续关于分类任务的应用值得展望。

3.Learning the offset部分讲述了offset的学习过程的细节。


user avatar   yuwen-xiong 网友的相关建议: 
      

冒个泡,一个半月以后终于把code release出来了,放在了

msracver/Deformable-ConvNets

,当时做实验用的是内部的只能在Windows上跑的支持多卡做detection的Caffe,基本没法release,花了一个多月迁移到了MXNet上。其实我们的实现跟现有的repo并不太一样,欢迎大家来围观。




  

相关话题

  为什么微软要删除世界上最大的公开人脸识别数据库? 
  如何评价通信工程很多导师都研究机器学习人工智能而不是传统的天线电磁场等方向? 
  想问下专业人士 OpenCv会被深度学习进一步取代吗进一步取代吗? 
  如何看待旷视 detection 组组长俞刚跳槽腾讯 PCG 光影研究室? 
  为什么 BERT 的 intermediate_size 这么大? 
  如何评价最新的Octave Convolution? 
  2021 年各家大厂的 AI Lab 现状如何? 
  如何学习 SQL 语言? 
  一些科学家们支持强人工智能理论的理由是什么? 
  PyTorch中在反向传播前为什么要手动将梯度清零? 

前一个讨论
为什么 Non-Convex Optimization 受到了越来越大的关注?
下一个讨论
如何看待Yoav Goldberg 怒怼来自MILA的GAN for NLG的paper?





© 2025-01-31 - tinynew.org. All Rights Reserved.
© 2025-01-31 - tinynew.org. 保留所有权利