百科问答小站 logo
百科问答小站 font logo



如何理解本征函数与波函数的关系? 第1页

  

user avatar   chxiluuu 网友的相关建议: 
      

体系的状态——希尔伯特空间

波函数——空间中的点

厄米算符——空间中的一个线性变换

本征函数——对应厄米算符的一组完备单位正交基,构成空间的一个坐标系

更直观一点,可以用该坐标系将态空间作坐标映射到同构的无限维坐标向量空间中来看:

本征函数——完备单位正交基{e}

波函数——空间中以{e}为基的向量v

厄米算符——坐标向量空间中的一个线性变换

厄米算符的标准矩阵表示——以{e}为基的对应该算符线性变换的标准矩阵(算符作用在基上),满足性质厄米矩阵中矩阵元等于其伴随: Aij=(Aji)*。

因为{e}是原态空间中算符本征函数的坐标表示,所以在坐标空间中为算符对应线性变换的特征向量,因此坐标空间中算符对应线性变换的标准矩阵为对角矩阵,对角元为本征值。当然也可以换一组完备单位正交基{ε}(也可以不用单位正交),为厄米算符的另一种矩阵表示。可作基变换,对角化为以{e}为基的标准矩阵表示。不管选择什么样的基,这些矩阵表示都是相似的,并相似于唯一的标准矩阵——以{e}为基的对角矩阵。

对应到原态空间,是以本征函数为基的矩阵表示为对角矩阵,对角元为本征值。非本征函数为基的矩阵表示可对角化为该对角矩阵,也相当于做了基变换。


在坐标向量空间里看,非简并情况下测量(线性变换)后体系的态(向量)投影到了其中一个基ei上。对应到原态空间就是投影到了其中一个本征函数上。该本征函数(基ei)所定义的坐标轴是态空间(坐标向量空间)中的一个子空间。简并的情况下则是投影到简并基所张成的子空间(特征向量空间)里,其投影为简并基的线性组合。




  

相关话题

  为什么任何东西都不能从黑洞逃逸出去? 
  只有历史本科的威腾是怎样进入普林斯顿读数学 Phd 的? 
  中科院完成目前世界上最大口径碳化硅单体反射镜研制,这一成果有哪些意义? 
  一有质量粒子以近光速来回穿越大脑能否致命? 
  著名物理学家在《麻省理工科技评论》发表观点,认为量子计算存在炒作问题,量子计算距离实际应用还有多远? 
  光可以使物体温度降低或是冷冻吗?什么原理?有案例吗? 
  能否请详细论述热力学基本公式在可逆与非可逆过程均成立原因? 
  国际社会是如何确定一个国家拥有大规模杀伤性武器的? 
  一根线延伸到大气层以外会怎样? 
  怎么理解多重世界理论? 

前一个讨论
波函数有无量纲?怎么用动量本征函数说明?
下一个讨论
全职炒股的男生真的不靠谱吗?





© 2025-06-27 - tinynew.org. All Rights Reserved.
© 2025-06-27 - tinynew.org. 保留所有权利