百科问答小站 logo
百科问答小站 font logo



如何通俗易懂地讲解什么是 PCA(主成分分析)? 第1页

  

user avatar   matongxue 网友的相关建议: 
      

主元分析也就是PCA,主要用于数据降维。

1 什么是降维?

比如说有如下的房价数据:

这种一维数据可以直接放在实数轴上:

不过数据还需要处理下,假设房价样本用 表示,那么均值为:

然后以均值 为原点:

以 为原点的意思是,以 为0,那么上述表格的数字就需要修改下:

这个过程称为“中心化”。“中心化”处理的原因是,这些数字后继会参与统计运算,比如求样本方差,中间就包含了 :

说明下,虽然样本方差的分母是应该为n-1,这里分母采用 是因为这样算出来的样本方差 为一致估计量,不会太影响计算结果并且可以减小运算负担。

用“中心化”的数据就可以直接算出“房价”的样本方差:

“中心化”之后可以看出数据大概可以分为两类:

现在新采集了房屋的面积,可以看出两者完全正相关,有一列其实是多余的:

求出房屋样本、面积样本的均值,分别对房屋样本、面积样本进行“中心化”后得到:

房价( )和面积( )的样本协方差是这样的(这里也是用的一致估计量):

可见“中心化”后的数据可以简化上面这个公式,这点后面还会看到具体应用。

把这个二维数据画在坐标轴上,横纵坐标分别为“房价”、“面积”,可以看出它们排列为一条直线:

如果旋转坐标系,让横坐标和这条直线重合:

旋转后的坐标系,横纵坐标不再代表“房价”、“面积”了,而是两者的混合(术语是线性组合),这里把它们称作“主元1”、“主元2”,坐标值很容易用勾股定理计算出来,比如在“主元1”的坐标值为:

很显然 在“主元2”上的坐标为0,把所有的房间换算到新的坐标系上:

因为“主元2”全都为0,完全是多余的,我们只需要“主元1”就够了,这样就又把数据降为了一维,而且没有丢失任何信息:

2 非理想情况如何降维?

上面是比较极端的情况,就是房价和面积完全正比,所以二维数据会在一条直线上。

现实中虽然正比,但总会有些出入:

把这个二维数据画在坐标轴上,横纵坐标分别为“房价”、“面积”,虽然数据看起来很接近一条直线,但是终究不在一条直线上:

那么应该怎么降维呢?分析一下,从线性代数的角度来看,二维坐标系总有各自的标准正交基(也就是两两正交、模长为1的基), :

在某坐标系有一个点, ,它表示在该坐标系下标准正交基 的线性组合:

只是在不同坐标系中, 的值会有所不同(旋转的坐标表示不同的坐标系):

因为 到原点的距离 不会因为坐标系改变而改变:

而:

所以,在某坐标系下分配给 较多,那么分配给 的就必然较少,反之亦然。最极端的情况是,在某个坐标系下,全部分配给了 ,使得 :

那么在这个坐标系中,就可以降维了,去掉 并不会丢失信息:

如果是两个点 ,情况就复杂一些:

为了降维,应该选择尽量多分配给 ,少分配给 的坐标系。

3 主元分析(PCA)

怎么做呢?假设有如下数据:

上面的数据这么解读,表示有两个点:

这两个点在初始坐标系下(也就是自然基 )下坐标值为:

图示如下:

随着坐标系的不同, 的值会不断变化:

要想尽量多分配给 ,借鉴最小二乘法(请参考如何理解最小二乘法)的思想,就是让:

要求这个问题,先看看 怎么表示,假设:

根据点积的几何意义(如何通俗地理解协方差和点积)有:

那么:

上式其实是一个二次型(可以参看如何通俗地理解二次型):

这里矩阵 就是二次型,是一个对称矩阵,可以进行如下的奇异值分解(可以参看如何通俗地理解奇异值分解):

其中, 为正交矩阵,即 。

而 是对角矩阵:

其中, 是奇异值, 。

将 代回去:

因为 是正交矩阵,所以令:

所得的 也是单位向量,即:

继续回代:

最初求最大值的问题就转化为了:

感兴趣可以用拉格朗日乘子法计算上述条件极值(参看如何通俗地理解拉格朗日乘子法以及KKT条件),结果是当 时取到极值。

因此可以推出要寻找的主元1,即:

总结下:

同样的思路可以求出:

4 协方差矩阵

上一节的数据:

我们按行来解读,得到了两个向量 :

在这个基础上推出了矩阵:

这个矩阵是求解主元1、主元2的关键。

如果我们按列来解读,可以得到两个向量 :

即:

那么刚才求出来的矩阵就可以表示为:

之前说过“中心化”后的样本方差(关于样本方差、协方差可以参看这篇文章:如何通俗地理解协方差和点积):

样本协方差为:

两相比较可以得到一个新的矩阵,也就是协方差矩阵:

都可以进行奇异值分解:

可见,协方差矩阵 的奇异值分解和 相差无几,只是奇异值缩小了 倍,但是不妨碍奇异值之间的大小关系,所以在实际问题中,往往都是直接分解协方差矩阵 。

5 实战

回到使用之前“中心化”了的数据:

这些数据按行,在自然基下画出来就是:

按列解读得到两个向量:

组成协方差矩阵:

进行奇异值分解:

根据之前的分析,主元1应该匹配最大奇异值对应的奇异向量,主元2匹配最小奇异值对应的奇异向量,即:

以这两个为主元画出来的坐标系就是这样的:

如下算出新坐标,比如对于 :

以此类推,得到新的数据表:

主元2整体来看,数值很小,丢掉损失的信息也非常少,这样就实现了非理想情况下的降维。

本文的推导用了非常多的线性代数知识,有兴趣深入学习的,可以关注我们微信公众号:“马同学高等数学”,在微信菜单栏右下角“付费课程”中购买阅读。

文章的最新版本在(可能有后继更新):如何理解主元分析(PCA)?


user avatar   shuai-shuai-9-13 网友的相关建议: 
      

我努力工作,年收入突破百万。我楼下小卖部老板眼红了。

他说他每天7点开店,晚上10点关店,工作时间比我长,收入却比我低,这不公平。为此,他甚至发展出了一套小卖部老板人权理论,要求将卖给我的可乐从一瓶2块钱涨到100块钱。

他说之前他受太多委屈了,等他觉得委屈弥补回来了,他会把价钱降到一瓶4块钱的。但想像原来一样2块钱一瓶那是永远不可能的。

我默默想了一下,走多一百米,用2块钱在另一家店买了一瓶可乐。

这件事被小卖部老板知道了,他生气了,他跑去骂另一家小卖部老板,骂他不尊重小卖部老板人权理论,并且在我家楼下贴大字报隐晦地骂我。

你说我为啥讨厌他?

我不只讨厌他,我甚至想报警呢。可惜警察说这事他们管不了。

……

这件事还有后续。

后来,小卖部老板人权组织找到了我,跟我说我楼下的小卖部老板的小卖部老板人权理论不是正宗的,他们才是正宗的。

我说,那你们的是怎么样的?

他们说,我们卖3块。




  

相关话题

  如何理解主成分分析中的协方差矩阵的特征值的几何含义? 
  数理统计中未知参数的置信区间估计方法中,存在最佳的枢轴量吗? 
  如何正确理解小概率事件,以及概率和哲学的关系? 
  在统计学领域有哪些经典奠基性的论文? 
  如何通俗易懂地讲解什么是 PCA(主成分分析)? 
  因素分析、熵值法的用法区别是什么? 
  「根据约翰霍普金斯大学统计...」是什么梗? 
  怎么通过一维分布的随机样本推测原分布? 
  数理统计中未知参数的置信区间估计方法中,存在最佳的枢轴量吗? 
  能否用具体的例子解释一下 (Model-based) Structural Estimation? 

前一个讨论
人工智能将会为教育带来哪些改变?
下一个讨论
买投影仪还是大屏幕电视?





© 2024-11-22 - tinynew.org. All Rights Reserved.
© 2024-11-22 - tinynew.org. 保留所有权利