百科问答小站 logo
百科问答小站 font logo



为什么弱Lp空间不是赋范线性空间? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

这句话不能说对,也不能说错。

事情是这样的,这得分情况讨论。

对于弱空间 ,如果你给予如下的quasi-norm

,

这个空间的确不是赋范空间,因为它不满足三角不等式,举个例子,考虑在 上的函数 , ,我们发现 , 经过计算你会发现如果你要求

这就等价于

,

这个一般是不能成立的。不过,我们可以得到

,

也就是这个写成范数的东西其实是准范数(quasi-norm),不过,这个问题还有一个第二层,那就是当 的时候

,

其中 . 根据这个对偶关系,如果我们定义新范数

,

那么 就是一个Banach空间。在实际应用的时候,一般也会把这种洛伦兹空间看成Banach空间。

对上述内容的具体证明感兴趣的人可以参考下面的文献

Grafakos, Classical Fourier analysis.




  

相关话题

  为什么现代数学经常会关心整体性质?能不能举例详细说说? 
  x=a,a为常数,这个图像是连续的吗? 
  球面上的几何是黎曼几何,那球面上的蚂蚁感受到的物理世界是欧氏几何吗? 
  如何证明Banach空间的有限维子空间的性质? 
  怎样理解任何有限集都是紧集? 
  宇宙航行如何确定坐标? 
  (动力系统 + 拓扑学 + 抽象代数)和(泛函分析 + 实变函数 + 复分析和解析几何)有哪些联系? 
  一个无穷维线性空间的所有基都是等势的吗? 
  既然勒贝格积分是黎曼积分的改进,那为什么还要学黎曼积分?淘汰黎曼积分,直接学勒贝格积分不好吗? 
  为什么弱Lp空间不是赋范线性空间? 

前一个讨论
C++中如何将string类型转换为int类型?
下一个讨论
量化交易有怎样的职业发展路径?薪资与前景如何?





© 2025-06-07 - tinynew.org. All Rights Reserved.
© 2025-06-07 - tinynew.org. 保留所有权利