百科问答小站 logo
百科问答小站 font logo



如何证明单位圆周上n个点两两距离乘积的平方当且仅当各点均匀分布时取到最大值nⁿ? 第1页

  

user avatar   RealFiddie 网友的相关建议: 
      
命题 单位圆周上n个点两两距离的乘积不超过

证明:设单位圆周的n个点为 (复平面上),则这n个点两两距离的乘积为

(Vandermonde行列式)

由Hadamard不等式:(上面,如果记 则 )

因此单位圆周上n个点两两距离的乘积不超过 QED

注:Hadamard不等式:(其实对复矩阵也成立)

定理3[Hadamard不等式]若是任意的n阶复矩阵, 则

证明:对A作QR分解:A=QR, 其中Q是酉矩阵,R是上三角阵. 作如下改写:则而是酉矩阵, 根据“酉变换不改变Euclid范数”可知则根据可知QED

Open problem: Euclid空间 的单位球面 上n个点两两距离的乘积的最大值是多少?




  

相关话题

  数学家在知道哥德尔不完备定理后为何还继续研究数学? 
  世界未解猜想需要学完所有数学才能破解吗? 
  有没有在高考数学中使用洛必达法则而不扣分的方法? 
  为什么一个方程有复数解,数是一维的、二维的,还是?数学的性质特点是什么?数的维度是否暗示了能量的维度? 
  世界上是不是不存在完美的圆? 
  设f(n)=lcm(1, 2, …, n),如何证明∑1/f(n) (n取1到∞) 是一个无理数? 
  如何理解香农第一定理? 
  正常的生活是否会限制数学家的发展? 
  怎样理解“范畴”? 
  如何看待吴伊卓高考数学使用搜题软件作弊? 

前一个讨论
布玛为什么离开雅木茶?
下一个讨论
怎么评价十几年前央视《对话》与韩寒的那场对话?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利