百科问答小站 logo
百科问答小站 font logo



如何证明单位圆周上n个点两两距离乘积的平方当且仅当各点均匀分布时取到最大值nⁿ? 第1页

  

user avatar   RealFiddie 网友的相关建议: 
      
命题 单位圆周上n个点两两距离的乘积不超过

证明:设单位圆周的n个点为 (复平面上),则这n个点两两距离的乘积为

(Vandermonde行列式)

由Hadamard不等式:(上面,如果记 则 )

因此单位圆周上n个点两两距离的乘积不超过 QED

注:Hadamard不等式:(其实对复矩阵也成立)

定理3[Hadamard不等式]若是任意的n阶复矩阵, 则

证明:对A作QR分解:A=QR, 其中Q是酉矩阵,R是上三角阵. 作如下改写:则而是酉矩阵, 根据“酉变换不改变Euclid范数”可知则根据可知QED

Open problem: Euclid空间 的单位球面 上n个点两两距离的乘积的最大值是多少?




  

相关话题

  数学上是否存在这样的情况,给定条件已经能确定结果的唯一性,但就是求不出来!据说椭圆周长就是。? 
  有两个疑问:一是三角锥构型是不是只用于化学的用语,因为在数学上感觉没学过;二是 p4 是什么构型? 
  请问如何用微积分去思考双杆模型? 
  假如圆周率是变量会怎么样? 
  财险精算师如何为男士开发出一款“早泄险”? 
  国外不用学数学的专业有哪些? 
  目前数学的符号体系有多混乱? 
  如果一个圆的半径无限大,那它还是一个圆吗? 
  如何计算 sqrt(tan x) 在 0 到 π/2 的定积分? 
  有没有在高考数学中使用洛必达法则而不扣分的方法? 

前一个讨论
布玛为什么离开雅木茶?
下一个讨论
怎么评价十几年前央视《对话》与韩寒的那场对话?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利