首先纠正一个错误:公理不可以证伪。
事实上公理就只是“规定”而已,它在物理世界是对是错对数学而言根本不重要,对数学而言重要的在假设公理正确的情况下哪些东西是正确的。所以可以创造无穷无尽的公理系统,每一个里面的定理都有可能与现实世界的情况大相径庭,但是你不能从数学角度说它们错误。
然而对人类而言,并不可能穷尽这些可能是稀奇古怪的公理系统。所以你说得对,人类发展的数学总是有未知领域。