给紧支集的光滑函数组成的集合不同的度量,紧化之后得到的空间完全不一样,这就是为什么泛函分析中会有各种各样的空间。比如我们考虑平方积分再开方所定义的度量
紧化之后就成了 空间,这是一个Hilbert空间,里面有一个自然的内积
而如果我们考虑 度量
其中 ,那么紧化之后就得到了 空间,它就不是Hilbert空间,只是一个Banach空间。
当然最有用的还是加入了导数积分的度量,我们叫它Sobolev度量:
它兼顾了函数本身的大小和它的导数的大小。用这个度量紧化之后得到的空间就是Sobolev空间。对于Sobolev空间,我们就有各种Sobolev嵌入定理说明空间中的函数实际是有很好的光滑性的。
当然我们还可以把函数看成是函数空间上的线性泛函,这样可以定义函数空间的线性泛函上的弱星拓扑。
为什么要考虑这些度量紧化后的空间呢?这是因为我们在做分析,或解微分方程的时候,常常需要取极限,而第一,光滑函数取极限之后不一定是光滑函数;第二,在不同度量下取极限得到的极限会完全不一样。
比如人们在解偏微分方程的时候,常常要在更宽松的条件下求出一个解,这个解称为弱解。它可能只在分布意义下存在(也就是等式左右两边都看成线性泛函的时候是相等的)。然后再用各种估计证明出这个解实际是在某个Sobolev空间中,最后再用Sobolev嵌入定理证明这个弱解实际上就是真实意义上的解。