百科问答小站 logo
百科问答小站 font logo



数学中为什么要定义各种空间? 第1页

  

user avatar   huo-po-de-miao-ge 网友的相关建议: 
      

给紧支集的光滑函数组成的集合不同的度量,紧化之后得到的空间完全不一样,这就是为什么泛函分析中会有各种各样的空间。比如我们考虑平方积分再开方所定义的度量

紧化之后就成了 空间,这是一个Hilbert空间,里面有一个自然的内积

而如果我们考虑 度量

其中 ,那么紧化之后就得到了 空间,它就不是Hilbert空间,只是一个Banach空间。

当然最有用的还是加入了导数积分的度量,我们叫它Sobolev度量:

它兼顾了函数本身的大小和它的导数的大小。用这个度量紧化之后得到的空间就是Sobolev空间。对于Sobolev空间,我们就有各种Sobolev嵌入定理说明空间中的函数实际是有很好的光滑性的。

当然我们还可以把函数看成是函数空间上的线性泛函,这样可以定义函数空间的线性泛函上的弱星拓扑。

为什么要考虑这些度量紧化后的空间呢?这是因为我们在做分析,或解微分方程的时候,常常需要取极限,而第一,光滑函数取极限之后不一定是光滑函数;第二,在不同度量下取极限得到的极限会完全不一样。

比如人们在解偏微分方程的时候,常常要在更宽松的条件下求出一个解,这个解称为弱解。它可能只在分布意义下存在(也就是等式左右两边都看成线性泛函的时候是相等的)。然后再用各种估计证明出这个解实际是在某个Sobolev空间中,最后再用Sobolev嵌入定理证明这个弱解实际上就是真实意义上的解。




  

相关话题

  这两个积分应该怎么求? 
  数学中以 e 为底的指数函数 f(x)=exp(x) 求导后为什么还是它本身? 
  有没有处处不可导的凸函数? 
  我今年16岁,昨天花了2个小时用梅涅劳斯逆定理证明了帕斯卡定理,那我在数学方面有天赋吗? 
  直线可不可以看做是半径无限大的圆? 
  数学中,你最服的技巧是哪个? 
  如何用多种方法(几何解释除外)来证明此不等式? 
  y=x^x的原函数是多少,能求出来吗? 
  负数与负数相乘为什么会得正? 
  数学和物理对一般人来讲真的有必要学那么难吗? 

前一个讨论
如何看待电子科技大学校长李言荣出任四川大学校长?
下一个讨论
读材料专业的你,后来怎么样了?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利