百科问答小站 logo
百科问答小站 font logo



使用pytorch时,训练集数据太多达到上千万张,Dataloader加载很慢怎么办? 第1页

  

user avatar   fang-niu-wa-28-17 网友的相关建议: 
      

下面是我见到过的写得最优雅的,预加载的dataloader迭代方式可以参考下:

使用方法就和普通dataloder一样 for xxx in trainloader .

主要思想就两点 , 第一重载 _iter 和 next_ ,第二点多线程异步Queue加载

       import numbers import os import queue as Queue import threading  import mxnet as mx import numpy as np import torch from torch.utils.data import DataLoader, Dataset from torchvision import transforms   class BackgroundGenerator(threading.Thread):     def __init__(self, generator, local_rank, max_prefetch=6):         super(BackgroundGenerator, self).__init__()         self.queue = Queue.Queue(max_prefetch)         self.generator = generator         self.local_rank = local_rank         self.daemon = True         self.start()      def run(self):         torch.cuda.set_device(self.local_rank)         for item in self.generator:             self.queue.put(item)         self.queue.put(None)      def next(self):         next_item = self.queue.get()         if next_item is None:             raise StopIteration         return next_item      def __next__(self):         return self.next()      def __iter__(self):         return self   class DataLoaderX(DataLoader):     def __init__(self, local_rank, **kwargs):         super(DataLoaderX, self).__init__(**kwargs)         self.stream = torch.cuda.Stream(local_rank)         self.local_rank = local_rank      def __iter__(self):         self.iter = super(DataLoaderX, self).__iter__()         self.iter = BackgroundGenerator(self.iter, self.local_rank)         self.preload()         return self      def preload(self):         self.batch = next(self.iter, None)         if self.batch is None:             return None         with torch.cuda.stream(self.stream):             for k in range(len(self.batch)):                 self.batch[k] = self.batch[k].to(device=self.local_rank,                                                  non_blocking=True)      def __next__(self):         torch.cuda.current_stream().wait_stream(self.stream)         batch = self.batch         if batch is None:             raise StopIteration         self.preload()         return batch   class MXFaceDataset(Dataset):     def __init__(self, root_dir, local_rank):         super(MXFaceDataset, self).__init__()         self.transform = transforms.Compose(             [transforms.ToPILImage(),              transforms.RandomHorizontalFlip(),              transforms.ToTensor(),              transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),              ])         self.root_dir = root_dir         self.local_rank = local_rank         path_imgrec = os.path.join(root_dir, 'train.rec')         path_imgidx = os.path.join(root_dir, 'train.idx')         self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')         s = self.imgrec.read_idx(0)         header, _ = mx.recordio.unpack(s)         if header.flag > 0:             self.header0 = (int(header.label[0]), int(header.label[1]))             self.imgidx = np.array(range(1, int(header.label[0])))         else:             self.imgidx = np.array(list(self.imgrec.keys))      def __getitem__(self, index):         idx = self.imgidx[index]         s = self.imgrec.read_idx(idx)         header, img = mx.recordio.unpack(s)         label = header.label         if not isinstance(label, numbers.Number):             label = label[0]         label = torch.tensor(label, dtype=torch.long)         sample = mx.image.imdecode(img).asnumpy()         if self.transform is not None:             sample = self.transform(sample)         return sample, label      def __len__(self):         return len(self.imgidx)     




  

相关话题

  如何看待swin transformer成为ICCV2021的 best paper? 
  如何看待最近一段时间旷视科技Face++、阿里、小米、京东、科大讯飞和地平线等相继在南京建立研发中心? 
  如何评价2020年计算机视觉顶会CVPR投稿量破万的现象? 
  什么是大模型?超大模型?Foundation Model? 
  如何解读「量子计算应对大数据挑战:中国科大首次实现量子机器学习算法」? 
  了解/从事机器学习/深度学习系统相关的研究需要什么样的知识结构? 
  如何评价CVPR2019程序主席Derek Hoiem的论点:计算机视觉只是记忆,不是智能? 
  如何用一句话证明自然语言处理很难? 
  word2vec有什么应用? 
  为什么在实际的kaggle比赛中,GBDT和Random Forest效果非常好? 

前一个讨论
如何看待上海市科委、中科院上海有机所和观视频联合制作的科普微电影《无处不在的手性之有机师姐》?
下一个讨论
表哥说机械比计算机经管都好,如何看待他的言论?





© 2025-05-15 - tinynew.org. All Rights Reserved.
© 2025-05-15 - tinynew.org. 保留所有权利