这种认识是错误的,相反,MLE(最大似然估计)才对扰动项的分布形式有要求,虽然原则上讲只要你知道扰动项的分布形式,即便不是正态分布,MLE也可以估计,但你必须知道扰动项的具体分布形式是什么才能入手,而最小二乘法是可以放宽“知道扰动项的分布形式”这个要求的。
许多本科计量教材在最小二乘法时假设扰动项正态分布,是因为这些教材往往没有从介绍大样本理论入手。
最小二乘法虽然名字上是最小二乘法,实际上也的确最小二乘了,但本质上是一种矩估计。
只要模型的线形设置是正确的,矩条件E(x’u)=0,即“解释变量和扰动项的乘积”的均值是0,以及无完全多重共线性条件满足,那么最小二乘法就是一致估计,就是说只要这几样满足了,只要样本够多,那么估计的系数就会由于大数定理随着样本的增加而逐渐趋于真实的系数。
而且,只要样本够多,且“扰动项独立同分布的假设”满足,那么无论扰动项的具体分布是什么,参数的估计值都会由于中心极限定理而渐进服从正态分布,假设检验依旧有效。
即使出现异方差和自相关,也只会影响假设检验的显著性,不会影响参数估计的一致性,因为异方差和自相关不伤及前面所说的矩条件,这两种情况本质上只是破坏了中心极限定理应用时“扰动项是独立同分布”的应用条件。
只有样本不够多时,中心极限定理木有卵用,你为了进行假设检验,就必须得手动认为参数的估计值服从正态分布,所以你就只好假设扰动项是正态分布了。
综上所述,正态性假定在样本够多时完全不必要,异方差,自相关不会损害一致性,而且可以在已经搜集到的数据中通过方法进行调整,所以根本就不是什么大问题。
只有两个敌人是计量经济学的大敌,其一,矩条件不满足,这个被称为“内生性”,这是实证研究的主要攻克对象。其二,模型线形形式的设置问题,面对这个问题,计量经济学如果不进行非参数估计,一般不负责解决。而寄希望于纯经济学来解决。所以其实绝大多数的实证研究不过都是在经济学的框架下进行有限的验证,靠这种验证并不能说明整个经济学体系的科学性。
经典谣言之一了。
总结一下普通最小二乘的优良性质所需要的条件。对于回归方程:
以及如下假设:
注意以上假设中:
那么最小二乘法的性质:
以上这些性质都不需要正态性假设。所以如果只需要以上性质,正态性统统不需要。
啥时候需要正态性假设呢?
所以你样本小的话,OLS不是不可以用,只是假设检验可能会误差比较大而已。
一个简单的反例:
其中 , ,那么y大概是这样一个分布:
这正态吗?当然不正态啊。
但是能用最小二成法吗?
实际上完全符合上述假设的1-5。
这个经典谣言出现的本质原因是因为:
搞不清楚条件分布和无条件分布,小样本和大样本。