百科问答小站 logo
百科问答小站 font logo



如何用量子物理计算穿墙概率? 第1页

  

user avatar   yu-kun-25-50 网友的相关建议: 
      

1.单粒子穿过一维势阱的问题

这个问题的最简单情形是单粒子穿过一维势垒的问题,在随便一本量子力学教材里就能找到答案。下列截图来自曾谨言电子版

但相比于“人穿墙”的题设情形,这种假设还是太简单了。如果想要正确地估算自己穿墙的概率,就还要解决下面这两个问题——

  1. 真实的墙相当于什么样子的势垒?
  2. 怎么用单粒子的穿墙概率估算一个人穿墙的概率?

下面将分别讨论这两个问题

2.真实的墙,以及单粒子穿过真实的墙的概率

对真实的墙,第一个问题不好解决:我们实际上不知道把一个粒子塞进墙里需要多大的能量。不过我们可以把一面墙抽象成一系列互相独立的分子层,而把一个新粒子塞进分子层内,就需要打破原有的分子之间的相互作用。

这里用晶体做例子会比较好理解一些:如果想要把一个新的粒子塞进晶体之中,就意味着晶体中原本的粒子会不同程度地偏离正常的位置,而这种偏离需要克服化学键的连接。在最极端的情况之下,新的粒子将挤开原本的粒子,导致化学键的断裂。在这一例子中,让这些化学键断裂的能量就是把新的粒子塞到晶体中原本粒子的位置时所需要的能量,也就是我们关注的“势垒高度”。

以二氧化硅晶体为例,硅-氧键的键能是 460KJ/mol,那么破坏单个键所需要消耗的能量就是

不过让一个粒子穿过并不意味着需要把化学键完全破坏掉,通常只需要让路径附近处的原子出现轻微的位移。推动晶体内原子做这种微小位移所需要的能量很难计算,这里直接估计成键能的10%。考虑到这是很粗略的估算,只要保证量级正确就好。

这样一来,“单层”二氧化硅分子所对应的势垒高度也就是 0.48eV。此时可以将估算出的数据带回到单粒子穿过一维势垒的问题中处理了。各个参数分别为

  • 势垒高度:取为化学键键能的10%,
  • 势垒宽度:一层分子的厚度可以用化学键键长估算,取为
  • 粒子质量:由于人体内70%左右的质量是水,这里可以直接取水分子质量
  • 粒子能量:由于人的体温约为 310K,人体内分子的能量可以取为这一温度下粒子热运动的能量。约为 。

用这些参数会算出来此时的穿透概率是 ,这概率已经低得可怕了。一面 1cm 厚的墙里将会有 层这样的分子层,也就是说单个水分子穿透 1cm 厚的二氧化硅墙的概率是

这个数字已经离谱到单个水分子穿过单层二氧化硅分子层的概率看起来都不重要了,它意味着小数点后存在 个零……

它夸张到如下的程度:如果我们认为一页厚 0.1mm 的 A4 纸上可以写下 2000 个零,那么写下全部这些零会需要 张,或者说 17000 米厚的 A4 纸,大概相当于珠穆朗玛峰高度的两倍了。

而这还仅仅是单个水分子穿墙的概率……

3.真实的人,以及真实的人穿过真实的墙

想要真实的人一次性穿过一面真实的墙基本上是不可能的:由于退相干现象的存在,真实的人基本上不会有什么波函数,也表现不出什么量子效应。

不过如果我们只是为了有趣而计算出一个数据的话,可以参考很多科幻小说中对人体传送的设想:先把人体拆成一堆独立的分子,将这些分子传送到目的地之后再进行组合。这样的话,只要对前面的结果再做一次指数运算,也就得到了最终的概率。

取人体质量为 60kg,那么人体中大约会有 个分子。也就是说最后得到的“把真实的人打散成一堆独立的分子,再分别穿过一堵真实的墙”的概率大约是

这么个数,换句话讲现在我们大约需要写下 个零,同样按 A4 纸估算,这次的 A4 纸厚度将会达到 。而一光年也只有 ,换句话讲这些 A4 纸会堆出 亿光年。考虑到大部分宇宙学模型中给出的可观测宇宙半径大约是 200亿光年左右,这堆 A4 纸已经能堆穿百万亿个可观测宇宙了……

或许这就是宇宙级的幸运吧……




  

相关话题

  羚羊等弱小食草动物是怎么睡觉的?随地睡觉不会被捕食吃掉吗? 
  古人是如何炼铁的? 
  网上盛传的BBC说中国人常用的煮米饭方法,让你吃了更多的砒霜对不对? 
  物理学四大神兽掐架,谁输谁赢? 
  用压缩介质产生的温差来发电。。。这类永动机该怎么反驳? 
  深圳赛格大厦振动原因系桅杆风致涡激共振,如何通俗地解释?后续该如何避免? 
  当大小不一的颗粒放在同一个容器里的时候,如果大颗粒密度大于小颗粒,还会是小颗粒沉下去吗? 
  《105°的你》 说的是水分子的键角吗? 
  你怎么看待刘慈欣的观点:提倡环保而不考虑开发太阳系是件很不理智的事? 
  中国文学作品中刻画过参与了好几个重大历史事件、体验过较长时期内时代变迁的人物(如漫威中的金刚狼)吗? 

前一个讨论
形容词可以做主语吗?
下一个讨论
如何看待扬州未核酸检测将录入失信记录?





© 2025-01-30 - tinynew.org. All Rights Reserved.
© 2025-01-30 - tinynew.org. 保留所有权利