百科问答小站 logo
百科问答小站 font logo



使用pytorch时,训练集数据太多达到上千万张,Dataloader加载很慢怎么办? 第1页

  

user avatar   fang-niu-wa-28-17 网友的相关建议: 
      

下面是我见到过的写得最优雅的,预加载的dataloader迭代方式可以参考下:

使用方法就和普通dataloder一样 for xxx in trainloader .

主要思想就两点 , 第一重载 _iter 和 next_ ,第二点多线程异步Queue加载

       import numbers import os import queue as Queue import threading  import mxnet as mx import numpy as np import torch from torch.utils.data import DataLoader, Dataset from torchvision import transforms   class BackgroundGenerator(threading.Thread):     def __init__(self, generator, local_rank, max_prefetch=6):         super(BackgroundGenerator, self).__init__()         self.queue = Queue.Queue(max_prefetch)         self.generator = generator         self.local_rank = local_rank         self.daemon = True         self.start()      def run(self):         torch.cuda.set_device(self.local_rank)         for item in self.generator:             self.queue.put(item)         self.queue.put(None)      def next(self):         next_item = self.queue.get()         if next_item is None:             raise StopIteration         return next_item      def __next__(self):         return self.next()      def __iter__(self):         return self   class DataLoaderX(DataLoader):     def __init__(self, local_rank, **kwargs):         super(DataLoaderX, self).__init__(**kwargs)         self.stream = torch.cuda.Stream(local_rank)         self.local_rank = local_rank      def __iter__(self):         self.iter = super(DataLoaderX, self).__iter__()         self.iter = BackgroundGenerator(self.iter, self.local_rank)         self.preload()         return self      def preload(self):         self.batch = next(self.iter, None)         if self.batch is None:             return None         with torch.cuda.stream(self.stream):             for k in range(len(self.batch)):                 self.batch[k] = self.batch[k].to(device=self.local_rank,                                                  non_blocking=True)      def __next__(self):         torch.cuda.current_stream().wait_stream(self.stream)         batch = self.batch         if batch is None:             raise StopIteration         self.preload()         return batch   class MXFaceDataset(Dataset):     def __init__(self, root_dir, local_rank):         super(MXFaceDataset, self).__init__()         self.transform = transforms.Compose(             [transforms.ToPILImage(),              transforms.RandomHorizontalFlip(),              transforms.ToTensor(),              transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),              ])         self.root_dir = root_dir         self.local_rank = local_rank         path_imgrec = os.path.join(root_dir, 'train.rec')         path_imgidx = os.path.join(root_dir, 'train.idx')         self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')         s = self.imgrec.read_idx(0)         header, _ = mx.recordio.unpack(s)         if header.flag > 0:             self.header0 = (int(header.label[0]), int(header.label[1]))             self.imgidx = np.array(range(1, int(header.label[0])))         else:             self.imgidx = np.array(list(self.imgrec.keys))      def __getitem__(self, index):         idx = self.imgidx[index]         s = self.imgrec.read_idx(idx)         header, img = mx.recordio.unpack(s)         label = header.label         if not isinstance(label, numbers.Number):             label = label[0]         label = torch.tensor(label, dtype=torch.long)         sample = mx.image.imdecode(img).asnumpy()         if self.transform is not None:             sample = self.transform(sample)         return sample, label      def __len__(self):         return len(self.imgidx)     




  

相关话题

  ICML2020有哪些值得关注的工作? 
  分类机器学习中,某一标签占比太大(标签稀疏),如何学习? 
  DL/ML 模型如何部署到生产环境中? 
  transformer 为什么使用 layer normalization,而不是其他的归一化方法? 
  时间序列和回归分析有什么本质区别? 
  有没有哪些人工的工作是无法被机器替代的? 
  学习机器学习应该看哪些书籍? 
  多模态训练,怎么解决不同模态之间差异的问题? 
  对自己深度学习方向的论文有idea,可是工程实践能力跟不上,实验搞不定怎么办? 
  在Lasso中,oracle property指的是什么性质? 

前一个讨论
如何看待上海市科委、中科院上海有机所和观视频联合制作的科普微电影《无处不在的手性之有机师姐》?
下一个讨论
表哥说机械比计算机经管都好,如何看待他的言论?





© 2025-04-12 - tinynew.org. All Rights Reserved.
© 2025-04-12 - tinynew.org. 保留所有权利