百科问答小站 logo
百科问答小站 font logo



特征工程中的「归一化」有什么作用? 第1页

  

user avatar   qinlibo_nlp 网友的相关建议: 
      

为什么要进行归一化处理,下面从寻找最优解这个角度给出自己的看法。

例子

假定为预测房价的例子,自变量为面积,房间数两个,因变量为房价。

那么可以得到的公式为:

其中 代表面积, 代表房间数变量。

首先我们祭出两张图代表数据是否均一化的最优解寻解过程。

未归一化:

归一化之后

为什么会出现上述两个图,并且它们分别代表什么意思。

我们在寻找最优解的过程也就是在使得损失函数值最小的theta1,theta2。

上述两幅图代码的是损失函数的等高线。

我们很容易看出,当数据没有归一化的时候,面积数的范围可以从0~1000,房间数的范围一般为0~10,可以看出面积数的取值范围远大于房间数。

影响

这样造成的影响就是在画损失函数的时候,

数据没有归一化的表达式,可以为:

造成图像的等高线为类似椭圆形状,最优解的寻优过程就是像下图所示:

而数据归一化之后,损失函数的表达式可以表示为:

其中变量的前面系数几乎一样,则图像的等高线为类似圆形形状,最优解的寻优过程像下图所示:


从上可以看出,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。

这也是数据为什么要归一化的一个原因。

上面的梯度方向都应该和等高线方向,因为找不到原图,文字进行修正一下。




  

相关话题

  如何评价 DeepMind 在北京时间 19 年 1 月 25 日 2 点的《星际争霸 2》项目演示? 
  已有大量编程基础,如何速成python用于学习机器学习? 
  为什么方差要定义成平方?这么定义有什么利弊?如果把方差定义成 |X-E(X)|,这又有什么利弊? 
  VLOOKUP 到底有多重要? 
  国外的程序员是如何保养「革命的本钱」? 
  深度学习的多个loss如何平衡? 
  除了深度神经网络已经实现的特性以外,大脑还有哪些特性是值得机器学习领域借鉴的? 
  对于多元线性回归,如何证明任一自变量的系数等同于忽略其他变量后一元线性回归的系数? 
  人工「神经网络」技术在信息处理上有何特点,工作原理是什么? 
  统计学是科学吗? 

前一个讨论
放弃保研是一种什么体验?
下一个讨论
在线教育网站(Coursera、网易云课堂、腾讯课堂等)有哪些值得推荐的 Python 课程?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利