百科问答小站 logo
百科问答小站 font logo



在控制、自动化领域,用到的最高深最先进的数学理论工具是什么?控制是否是工科里用到数学最多最深的领域? 第1页

  

user avatar   BridgeQZH 网友的相关建议: 
      

经典控制理论:

首先是拉普拉斯变换

在s域内,就有了传递函数

为了分析控制系统,就会引入计算零极点,画根轨迹图。

在用频率响应法分析系统的时候,就会引入波特图和奈奎斯特图,波特图和奈奎斯特图用到的是复变函数的理论

为了设计自动控制系统,就要引入各种校正装置,但背后还是复变的理论支持。

到了离散系统,就要用到采样定理z变换,此时的传递函数就是脉冲传递函数了。

现代控制理论:

矩阵论,线性代数是最重要的基础,没有它们,就没有状态空间模型

传统的传递函数只能处理单输入单输出的情况,而且只看输入输出,相较于现代控制理论的状态的视角,其实是丢失了不少信息的。

为了分析线性动态系统,就会引入矩阵指数、状态转移矩阵、状态响应、输出响应

分析系统稳定性的时候,引入李雅普诺夫分析方法,构造李雅普诺夫函数,用到二次型的知识。

对系统的能控性和能观性的许多分析与判据,都要涉及到矩阵论的知识,比如能控性矩阵满秩说明系统能控。

对于线性反馈系统的综合,就要引入状态反馈,但本质上还是矩阵论的东西,不过是引入怎样的状态反馈,来进行负反馈调节。

模型预测控制(MPC):

离散时间的线性系统,引入许多分析性指标stability, reachability, PBH test

有限时间最优控制线性二次型最优控制

动态规划的思想设计控制器

在状态更新或者观测的时候如果有disturbance,就要引入Kalman Filter的方法。

引入finite horizoninfinite horizon的问题,控制器的设计涉及到LQR,然后扩展LQR,可以考虑状态或输入的限制,需要设计权重矩阵,这也是MPC控制器调参的重要内容。

非线性控制(Nonlinear Control):

首先是基于线性化的方法,这里要引入equilibrium point的概念,会有许多稳定性的定义,比如稳定,渐近稳定,指数稳定。然后,引入状态反馈、增益设计等方法。

然后,会讲到李雅普诺夫稳定,吸引域(Region of Attraction),这里的数学支撑是拉萨尔不变集原理,基于此,就有非线性控制中的重要方法了:反步法(Backstepping)。

再次考虑输入输出的关系,会有描述函数法

还有一些advanced的非线性控制的方法,比如滑模控制,状态观测,基于观测器的输出反馈,跟踪

强化学习:

这一部分自己也正在学习中,textbook是看的Dimitri P. Bertsekas的REINFORCEMENT LEARNING AND OPTIMAL CONTROL

想办法做值空间或策略空间近似:MPC就是将J star直接看做零;用神经网络来近似J star,得到的就是深度强化学习;Rollout方法也是试图近似J star得到J tilde。

除此之外,在控制人眼里看来,强化学习中的学习就是解决一个动态规划问题但不用explicit的数学模型。学习到了一个模型,就是系统辨识(System identification)之意。

更新:一张控制世界的地图,值得好好把玩




  

相关话题

  如何理解「Control is Dead」这一说法? 
  作为一个工程师,我很羡慕又嫉妒小说家,该怎么办? 
  AGV 的关键技术跟突破点有哪些? 
  这个题如何证? 
  如何看待西南某一211高校的数学系前20名中16人选了应用数学4人选了统计学,现在数学这么香吗? 
  选调要求机械制造及自动化,与机械设计制造及其自动化到底什么区别? 
  目前生物,化学等实验学科的实验自动化处在一个什么样的发展状况? 
  机器人视觉测量与控制的重点在哪? 
  如何改变「工科不如商科」的观念? 
  有哪些看似荒谬的事,却有着合理的数学解释? 

前一个讨论
拉普拉斯变换的物理意义是什么?
下一个讨论
如何通俗易懂地解释粒子自旋?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利