所谓电容就是存储电荷的结构。在大脑中,每个神经元都存在着这样的结构,即由两层磷脂分子组成的薄膜——磷脂双分子层(lipid bilayer)[1]:
而神经元细胞膜内外的电荷则是由离子(Na+, K+, Ca++; Cl-)的分布浓度不同来产生(离子通道, 也就是一种成孔蛋白,它通过允许某种特定类型的离子穿过该通道,来帮助细胞建立和控制质膜间的微弱电压压差[2]). 在描述神经电位的初始化和传递的Hodgkin–Huxley模型[3]中,可以看见代表磷脂双分子层电容特性的 :
神经元的静息时,其轴突上的压差在60~90 . 这样轴突的细胞膜构成一个圆柱电容器:
对于没有髓鞘化的轴突(神经髓鞘及其作用)来说,一个1 长轴突的电容典型值为0.1 , 存储电荷为6.8 . 而一个有髓鞘的等长轴突由于细胞膜内外间的距离显著增加,造成电容典型值下降到49 ,对应的存储电荷下降到 39 . 电荷存储下降约两个数量级,使神经信号传递速度显著上升。
实际电容(包括这里的神经细胞膜等效电容)有一些寄生效应,并不是纯粹简单的电容。由于电容导线的存在,有一定的电感,在高频时候会产生较大影响,这里以等效串联电感ESL表示:
由于ESL的存在,与电容C一起构成了一个谐振电路,其谐振频率便是电容的自谐振频率。在小于自谐振频率时,电容表现为容性,在大于自谐振频率时,电容表现为感性。因此电容在低于自谐振频率的区间内才有作为容性元件的利用价值[4].
一般来说,自谐振频率都在数千 量级,而神经信号远远小于这个量级,所以不用考虑自谐振频率的影响。