百科问答小站 logo
百科问答小站 font logo



练肌肉有什么用?除了体型上的好处之外? 第1页

  

user avatar   cesc-yu 网友的相关建议: 
      

为了和傻逼讲道理


user avatar   rou-zai-52 网友的相关建议: 
      

一、主要的好处是活命,降低死亡率

可能有些同学会不解,难道人的死亡率不是100%?还有人可以不死?

其实,在相关科学研究中,死亡是有时间和对象限制的。比如我们找来100个中年人,追踪他们15年,15年内有X人死亡,以此计算死亡率。死亡率在很大程度上反映疾病状况、生存质量和干预手段的有效性。

2018年的一项大型元分析包含了37万多名参与者,平均随访9年,年龄18-75岁。主要发现包括:长期进行系统阻力训练可以降低21%全因死亡率、17%心血管疾病死亡率;如果搭配有氧运动进行可降低全因死亡率40%。

支持肌肉/力量与死亡率之间负相关性的证据堆积如山

2008年的一项前瞻性队列研究,对8762名20至80岁男性[67]追踪了19年之久,发现肌肉力量与各种原因的死亡和癌症呈独立负相关,即使调整了其他混杂因素之后也是如此。年龄调整后,肌肉力量和心肺功能水平高的男性,死亡率比肌力水平最低的不健康男性死亡率低60%。并且,肌肉力量升高是长期训练的结果[68,69],长期抗阻训练对死亡率将降低发挥了一定的保护作用。

2007年的流行病学研究调查了800名65岁以上老人[74],发现握力较高男性死亡风险为低19%、心血管风险低27%、癌症死亡风险低19%,这些关联在进一步调整了纯肌肉量或体脂水平后仍具有统计学意义。

日本广岛成人健康研究(AHS)队列研究了35至74岁的4912人[75],握力每增加5公斤,男性心脏病风险降低15%、中风风险降低10%、肺炎风险降低15%;即使经过20多年的随访,每增加5公斤握力仍然降低相对风险8%。

一项目美国研究包含了2488名65岁及以上的墨西哥裔美国男性和女性[76],发现在控制了相关的危险因素后,握力是老年墨西哥裔美国人死亡的一个强有力的预测因素,握力<22.01 kg的男性和握力小于14 kg的女性5年后死亡的比例分别为38.2%和41.5%。

对82名老年女性患者的研究发现,最大握力是否达到5KG,是患者存活/死亡的最明确、最敏感分界线[70];日本的一项对6259人的研究发现,跳跃能力/握力/仰卧起坐能力较低的男性具有面临较高的死亡风险[71];

Metter等人在25年中搜集了1071名男性的数据,握力下降与死亡率增加有关[72];一项对8116人的调查发现,握力/仰卧起坐/俯卧撑等肌肉力量指标可以加拿大人的死亡率[73];

许多研究选择握力作为测试方式的原因是,它不需要太多的技巧,简单易行。如果选择其他运动来测试,则技巧可能会混淆测试数据。


二、肌肉训练降低死亡率的其中一种机制:对抗腹部肥胖/代谢综合征

数据表明,人类在25至65岁之间,内脏脂肪可增加300%以上[9]。

不同部位脂肪的生理效应截然不同[10],腹部/内脏脂肪比总脂肪与代谢综合征的关联性更强、更容易引发健康问题[11,12,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39]。

但如果脂肪分布在下半身或大腿,则相应风险降低[7,8,13,14,15,16,17,18,19,20,21,22,23]。作为印证,女性的雌激素水平比男性更高,由于雌激素具有减少内脏/腹部脂肪(“转移”到腿臀部)的作用[34],因此女性的心血管疾病率[34,40,41,42,43]和2型糖尿病几率要低于男性,并且即便两性的身体脂肪总量大致相等时,也是如此[44,45]。

代谢综合征包含了哪些?

腹部肥胖、血糖/血脂/血压/低密度脂蛋白胆固醇升高、胰岛素抵抗、慢性炎症,乃至于糖尿病等。并不是胖就完了,代谢综合征其病情发展的终点是各类致命性疾病[78,79,80],包括动脉粥样硬化[47]、心肌梗死[48,49,52]、冠心病[50,51,53]。

腹部肥胖还促进多种癌症发病率升高,包括乳腺癌[81]、结直肠癌[82,90,91,92]、子宫内膜癌[83]、食道癌[86]、肾癌[84]、肺癌[89]、胰腺癌[85]、甲状腺癌[87]和胆囊癌[88]等。

腰围越大,各类癌症几率相应升高。


练肌肉有助于抵抗腹部肥胖和代谢综合征。

因为从原理上说,骨骼肌是人体处理葡萄糖的主要器官[55],在正常情况下它处理了人体大约80%的葡萄糖[56,57]。

骨骼肌是一个巨大的糖库,普通人的骨骼肌大概能容纳400g左右葡萄糖,或者是每kg肌肉12g左右的糖——如果肌肉量很大,或者长期进行大运动量,肌肉可容纳的糖甚至可以超过800g。

注意,葡萄糖一旦被运输进入骨骼肌,被成肌糖原[122],就永远留在里面了。因为肌肉中没有相应的酶(葡萄糖-6-磷酸酶),所以肌糖原是无法分解成葡萄糖重新回到血液,不可能再被合成为身体其他部位的脂肪让我们发胖。

但随年龄增加身体老化,人类的骨骼肌逐渐萎缩,30岁后每10年萎缩3-8%[1,2],70岁后每十年就有减少25%-40%[65,66],这导致静息代谢率降低、葡萄糖摄取减少、脂质氧化能力降低[6]。

已经证明,肌肉的胰岛素敏感性、肌肉摄取/利用/消耗血糖的能力(特别是在不依赖胰岛素的情况下),与代谢综合征[58,59,60,61,62]和2型糖尿病[63,64]密切相关。

2007年,美国心脏协会临床心脏病学委员会和营养、体育和代谢理事会发表了一份科学声明,引用了一项包括8570名年龄在20-75岁之间的男性进行的研究。

该声明支持持一切有、无心血管疾病/代谢综合征的人进行肌肉训练[93],因为肌肉力量的发展可能会带来独立于心血管健康的、额外的好处;肌肉力量与代谢综合征患病率具有独立负相关关系。

肌肉训练与有氧训练带来的健康益处出在机制上的相似性,包括减少腹部脂肪[94]、降低血液甘油三酯[95]、降低高密度脂蛋白胆固醇[96]、血糖改善等[97]。

无氧运动/抗阻训练/高强度训练都对于减少腹部/内脏脂肪有好处。

Treuth等人观察到对14名健康老年妇女(平均年龄67岁)进行每周3次持续16周的训练后,她们的内脏脂肪从143减少到130cm²、同时力量和肌肉横截面积增加[98],研究者认为这些变化对于预防与年龄相关的腹部脂肪增加、及由此带来的负面健康结果可能很重要。

一项目我国的研究,针对60名65-75岁的肥胖老人,发现单纯的力量训练能减少老人的内脏脂肪,增加他们的肌肉体积、握力[99]。

虽然单纯抗阻训练的减脂效果要低于有氧或混合训练,但也是不可忽视的一种促进健康的手段。而且力量训练组的老人具有更高的IGF-1水平,这可能导致他们的骨骼、韧带、关节更健康,代谢状态优化。

无氧运动/高强度运动在相同的能量消耗下,比有氧运动产生更大的腹部脂肪减少[98]。Blomster等人研究了11140名糖尿病患者,发现与不进行或轻度运动的患者相比,中度至剧烈运动的患者发生心血管事件的风险降低22%、微血管并发症少15%、全因死亡率降低17%。

所以不难理解为什么美国运动医学院推荐超重/肥胖者也进行抗阻训练[100]。


三、肌肉训练的更大意义体现在生命力薄弱、身体差的老年人身上

例如抑郁症,一种严重降低生活质量的疾病,许多抑郁症患者自杀[101,102,103,104]。体力活动可以可以提升身体活力,改善生活质量,对抗抑郁症[105,106,107,108];抗阻训练也被证明有助于降低抑郁程度[109,110]。

老年人容易发生大脑功能衰退,许多大型研究表明肌肉力量和大脑功能具有密切关系,肌肉力量较强者的反应、逻辑、记忆、认知能力都更高[112,113,114,115,116]。肌肉力量强和大脑功能好两者之间并不只是单纯的同时发生,也有明确的因果关系

Mavros等人设计了双盲/双假实验研究了100名55岁以上患有轻度认知障碍的老人[111],在专业培训师的监督下,他们进行的为期6个月的渐进负荷力量训练(负荷为80-92%的大强度)。训练提高了老人的力量和认知能力,他们的阿茨海默认知表中的得分显著改善。特别值得一提的是,Mavros等人还研究并排出了肌肉力量与认知之间的反向因果关系,确认了是肌肉力量提高了认知水平

这样的研究结论被一而再再而三的复制、被反复论证。

Roberta对65岁以上老人进行3个月的渐进力量训练,方案包括腿屈伸、腿弯举、卧推、划船、箭步蹲、拉伸、自重训练等,促进了他们神经功能和执行能力的改善[117];

Carla等人对67名55-75岁的健康老年人进行16周的力量训练,在进行思维任务期间,他们大脑左前额叶皮层耗氧量下降,运动训练使大脑皮层激活时的脑氧合效率更高,认知表现(反应时间)得到改善[118];

Lindsay等人对86名70至80岁的妇女进行了为期6个月的随机对照试验,发现每周两次的力量训练可以改善她们的注意力、选择性、联想记忆功能,而平衡和协调性训练则不能[119];

Fia等人100名患有轻度认知障碍的老年人[121],6个月的力量训练改善阿茨海默平分表48%、无阻力训练改善27%、认知训练则无改善只减轻了记忆力的下降。

Tsai等人从大学医院阿茨海默研究中心招募了66名患有认知障碍的老年人(60至80岁)进行实验,证实有氧/力量训练后他们的认知改善,反应时间缩短[120]。

在更宏观的层面上,Sarah等人对47个列队研究进行了元分析,得出体力活动与认知能力下降和痴呆呈显著的负相关关系。体力活动与认知障碍风险减少35%、痴呆风险14%有关;

这些内容我以前写过,就不详细铺开了。

如何看待我国老年人健身很少进行力量训练,而是采取快走等有氧耐力运动?

此外,肌肉训练防止摔倒骨折等。对于老年人来说,一次摔倒引发的骨折,结果可能是住院、卧床、丧失行动能力、健康状况恶化、乃至死亡,网传袁老就是在一次摔倒后身体状况急剧恶化的。

此外,就算没有骨折,长期力量训练也有助于减少受伤几率和降低伤情,因为负重可导致骨密度提高、韧带、肌腱、肌肉的韧性/弹性加强。


References

1. Roubenoff R, Castaneda C. Sarcopenia—understanding the dynamics of aging muscle. Journal of the American Medical Association. 2001;286(10):1230–1231.

2. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. Journal of the Neurological Sciences. 1988;84(2-3):275–294.

3. DeFronzo R.A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J.P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.Diabetes.1981;30:1000–1007.

4. Defronzo RA, Simonson D, Ferrannini E, Barrett E. Insulin resistance: a universal finding in diabetic states. Bull Schweiz Akad Med Wiss. 1981:223–238.

5. Ferrannini E, Simonson DC, Katz LD, Reichard G, Jr, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes.Metabolism.1988;37:79–85.

6. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the national health and nutrition examination survey III. PLoS ONE. 2010;5(5)e10805

7. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: The Hoorn Study. Diabetes Care.2004;27:372–377.

8. Snijder MB, Visser M, Dekker JM, Goodpaster BH, Harris TB, Kritchevsky SB, et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48:301–308.

9. Hunter GR, Lara-Castro C, Byrne NM, Zakharkin SO, St-Onge MP, Allison DB. Weight loss needed to maintain visceral adipose tissue during aging. International Journal of Body Composition Research. 2005;3:55–61.

10. Williams MJ, Hunter GR, Kekes-Szabo T, Snyder S, Treuth MS. Regional fat distribution in women and risk of cardiovascular disease. American Journal of Clinical Nutrition. 1997;65(3):855–860.

11. Peiris AN, Sothmann MS, Hoffmann RG, et al. Adiposity, fat distribution, and cardiovascular risk. Annals of Internal Medicine. 1989;110(11):867–872.

12. Williams MJ, Hunter GR, Kekes-Szabo T, Snyder S, Treuth MS. Regional fat distribution in women and risk of cardiovascular disease. American Journal of Clinical Nutrition. 1997;65(3):855–860.

13. Snijder MB, Zimmet PZ, Visser M, Dekker JM, Seidell JC, Shaw JE. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: The AusDiab Study. Int J Obes Relat Metab Disord. 2004;28:402–409.

14. Kahn HS, Austin H, Williamson DF, Arensberg D. Simple anthropometric indices associated with ischemic heart disease. J Clin Epidemiol.1996;49:1017–1024.

15. Terry RB, Stefanick ML, Haskell WL, Wood PD (1991) Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat. Metabolism 40:733–740

16. Snijder MB, Dekker JM, Visser M et al (2003) Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res 11:104–111

17. Snijder MB, Dekker JM, Visser M et al (2003) Associations of hip and thigh circumferences independent of waist circumference with the incidence of type-2 diabetes: the Hoorn Study.Am J Clin Nutr 77:1192–1197

18. Lissner L, Bjorkelund C, Heitmann BL, Seidell JC, Bengtsson C (2001) Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res 9:644–646

19. Van Pelt RE, Evans EM, Schechtman KB, Ehsani AA, Kohrt WM (2002) Contributions of total and regional fat mass to risk for cardiovascular disease in older women. Am J Physiol Endocrinol Metab 282:E1023–E1028

20. Seidell JC, Han TS, Feskens EJ, Lean ME. Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulin-dependent diabetes mellitus. J Intern Med. 1997;242:401–6.

21. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. Am J Clin Nutr. 2001;74:315–21.

22. Lissner L, Bjorkelund C, Heitmann BL, Seidell JC, Bengtsson C. Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res. 2001;9:644–6.

23. M.B. Snijder, J.M. Dekker, M. Visser, L.M. Bouter, C.D. Stehouwer, P.J. Kostense, et al., Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study, Am.J. Clin. Nutr. 77 (2003) 1192–1197.

24. 1 Bjorntorp P. Metabolic implications of body fat distribution.Diabetes Care 1991; 14: 1132±1143.

25. Kissebah AH, Videlingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982;54:254-60.

26. Abate N, Garg A, Peshock RM, StrayGundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995;96: 88-98.

27. Planas A, Clará A, Pou JM, et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int J Obesity 2001;25:1068–70.

28. Kete I, Mariken, Volman M, et al. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol 2007;156:655–61.

29. Alexander JK. Obesity and coronary heart disease. Am J Med Sci 2001;321:215–24.

30. Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change, and coronary heart disease in women: risk within the ‘normal’ weight range. JAMA 1995;273:461–5.

31. Goodpaster BH, Krishnaswami S, Harris TB, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 2005;165:777–83.

32. Garrison RJ, Higgins MW, Kannel WB. Obesity and coronary heart disease. Curr Opin Lipidol 1996;7:199–202.

33. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 2002;23:706–13.

34. Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390

35. Sparrow D, Borkan GA, Gerzof SG, Wisniewski C, Silbert CK. Relationship of fat distribution to glucose tolerance: Results of computed tomography in male participants of the Normative Aging Study. Diabetes. 1986;35:411–415.

36. Bergstrom RW, Newell–Morris LL, Leonetti DL, Shuman WP, Wahl PW, Fujimoto WY. Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men. Diabetes. 1990;39:104–111.

37. Nagaretani H, Nakamura T, Funahashi T, Kotani K, Miyanaga M, Tokunaga K, et al. Visceral fat is a major contributor for multiple risk factor clustering in Japanese men with impaired glucose tolerance. Diabetes Care. 2001;24:2127–2133.

38. McNeely MJ, Boyko EJ, Shofer JB, Newell–Morris L, Leonetti DL, Fujimoto WY. Standard definitions of overweight and central adiposity for determining diabetes risk in Japanese Americans. Am J Clin Nutr. 2001;74:101–107.

39. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, et al. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis. 1994;107:239– 246.

40. Wingard DL, Suarez L, Barrett-Connor E (1983) The sex differential in mortality from all causes and ischemic heart disease. Am J Epidemio1117:165-172

41. Freedman DS, Jacobsen S J, Barboriak JJ et al. (1990) Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 81:1498-1506

42. Larsson B, Bengtsson C, Bj6rntorp Pet al. (1992) Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? Am J Epidemio1135: 266-273

43. Seidell JC, Cigolini M, Charzewska Jet al. (1991) Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 87:203-210

44. Despr6s JP, Allard C, Tremblay A, Talbot J, Bouchard C (1985) Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 34:967-973

45. Krotkiewski M, Bj6rntorp P, Sj6strOm L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162

46. Lear S. A., Humphries K. H., Kohli S., Chockalingam A., Frohlich J. J., Birmingham C. L. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT) The American Journal of Clinical Nutrition. 2007;86(2):353–359.

47. McGill H. C., Jr., McMahan C. A., Herderick E. E., et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–2718.

48. Fager G, Wiklund O, Olofsson SO, Wilhelmsen L, Bondjers G (1981) Multivariate analyses of serum apolipoproteins and risk factors in relation to acute myocardial infarction. Arteriosclerosis 1:273-279

49. Hamsten A, Walldius G, Dahlen G, Johansson B, De Faire U (1986) Serum lipoproteins and apolipoproteins in young male survivors of myocardial infarction. Atherosclerosis 59: 223-235

50. Gordon DJ, Probstfield JL, Garrison RJ et al. (1989) Highdensity lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8-15

51. Assmann G, Helmut S (1992) Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardio170:733-737

52. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917- 1921

53. Crouse JR, Parks JS, Schey HM, Kahl FR (1985) Studies of low density lipoprotein molecular weight in human beings with coronary artery disease. J Lipid Res 26:566-574

54. Bouchi R., Fukuda T., Takeuchi T., Minami I., Yoshimoto T., Ogawa Y. Sarcopenia is associated with incident albuminuria in patients with type 2 diabetes: A retrospective observational study. J. Diabetes Investig. 2017;8:783–787.

55. DeFronzo R.A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J.P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.Diabetes.1981;30:1000–1007

56. Defronzo RA, Simonson D, Ferrannini E, Barrett E. Insulin resistance: a universal finding in diabetic states. Bull Schweiz Akad Med Wiss. 1981:223–238.

57. Ferrannini E, Simonson DC, Katz LD, Reichard G, Jr, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes.Metabolism.1988;37:79–85.

58. Rabol R., Petersen K.F., Dufour S., Flannery C., Shulman G.I. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals.Proceedings of the National Academy of Sciences of the United States of America.2011;108:13705–13709

59. R. A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 (suppl. 2), S157–S163 (2009)

60. G. S. Hotamisligil, P. Arner, J. F. Caro, R. L. Atkinson, B. M. Spiegelman, Increased adiposetissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).

61. M. N. Rao, T. C. Neylan, C. Grunfeld, K. Mulligan, M. Schambelan, J.-M. Schwarz, Subchronic sleep restriction causes tissue-specific insulin resistance. J. Clin. Endocrinol. Metab. 100, 1664–1671 (2015).

62. L. N. Bell, J. M. Kilkus, J. N. Booth III, L. E. Bromley, J. G. Imperial, P. D. Penev, Effects of sleep restriction on the human plasma metabolome. Physiol. Behav. 122, 25–31 (2013).

63. Defronzo RA, Simonson D, Ferrannini E, Barrett E. Insulin resistance: a universal finding in diabetic states.Bull Schweiz Akad Med Wiss.1981:223–238.

64. Reaven GM. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Medica. 2005;47:201–210.3

65. Filippin L.I., Teixeira V.N., da Silva M.P., Miraglia F., da Silva F.S. Sarcopenia: A predictor of mortality and the need for early diagnosis and intervention. Aging Clin. Exp. Res. 2015;27:249–254.

66. Goodpaster B.H., Park S.W., Harris T.B., Kritchevsky S.B., Nevitt M., Schwartz A.V., Simonsick E.M., Tylavsky F.A., Visser M., Newman A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:1059–1064.

67. Jonatan R Ruiz, research associate,1,2 Xuemei Sui, research associate,3 Felipe Lobelo, research associate,3 James R Morrow, Jr, professor,4 Allen W Jackson, professor,4 Michael Sjöström, associate professor,1 and Steven N Blair, professor3,4.Association between muscular strength and mortality in men: prospective cohort study.BMJ. 2008 Jul 12; 337(7661): 92–95.

68. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007;116:572-84.

69. Thomis MA, Beunen GP, Maes HH, Blimkie CJ, Van Leemputte M, Claessens AL, et al. Strength training: importance of genetic factors. Med Sci Sports Exerc 1998;30:724-31.

70. Phillips P. Grip strength, mental performance and nutritional status as indicators of mortality risk among female geriatric patients. Age Ageing 1986;15:53-6.

71. Fujita Y, Nakamura Y, Hiraoka J, Kobayashi K, Sakata K, Nagai M, et al. Physical-strength tests and mortality among visitors to health-promotion centers in Japan. J Clin Epidemiol 1995;48:1349-59.

72. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 2002;57:B359-65.

73. Katzmarzyk PT, Craig CL. Musculoskeletal fitness and risk of mortality. Med Sci Sports Exerc 2002;34:740-4.

74. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol 2007;36:228-35.

75. Sasaki H, Kasagi F, Yamada M, Fujita S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med 2007;120:337-42.

76. Al Snih S, Markides KS, Ray L, Ostir GV, Goodwin JS. Handgrip strength and mortality in older Mexican Americans. J Am Geriatr Soc 2002;50:1250-6. 3

77. Rantanen T, Volpato S, Ferrucci L, Heikkinen E, Fried LP, Guralnik JM. Handgrip strength and cause-specific and total mortality in older disabled women: exploring the mechanism. J Am Geriatr Soc 2003;51:636-41.

78. Lindstrom M, Isacsson SO, Merlo J. Increasing prevalence of overweight, obesity and physical inactivity: two population-based studies 1986 and 1994. Eur J Public Health. 2003; 13(4):306–312.

79. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003; 289(1):76–79.

80. Zhang C, Rexrode KM, van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008; 117(13):1658–1667.

81. Chen G.C., Chen S.J., Zhang R., Hidayat K., Qin J.B., Zhang Y.S. et al. (2016) Central obesity and risks of pre- and postmenopausal breast cancer: a dose-response meta-analysis of prospective studies. Obes. Rev. 17, 1167–1177

82. Ma Y., Yang Y., Wang F., Zhang P., Shi C., Zou Y. et al. (2013) Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One 8, e53916.

83. Aune D., Navarro R.D., Chan D.S., Vingeliene S., Abar L., Vieira A.R. et al. (2015) Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann. Oncol. 26, 1635–1648

84. Wang F. and Xu Y (2014) Body mass index and risk of renal cell cancer: a dose-response meta-analysis of published cohort studies. Int. J. Cancer 135, 1673–1686

85. Genkinger J.M., Spiegelman D., Anderson K.E., Bernstein L., van den Brandt P.A., Calle E.E. et al. (2011) A pooled analysis of 14 cohort studies of anthropometric factors and pancreatic cancer risk. Int. J. Cancer 129, 1708–1717

86. Turati F., Tramacere I., La Vecchia C. and Negri E (2013) A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann. Oncol. 24, 609–617

87. Schmid D., Ricci C., Behrens G. and Leitzmann M.F (2015) Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obes. Rev. 16, 1042–1054

88. Li Z.M., Wu Z.X., Han B., Mao Y.Q., Chen H.L., Han S.F. et al. (2016) The association between BMI and gallbladder cancer risk: a meta-analysis. Oncotarget 7, 43669–43679

89. Hidayat K., Du X., Chen G., Shi M. and Shi B. (2016) Abdominal obesity and lung cancer risk: systematic review and meta-analysis of prospective studies. Nutrients 8,

90. Giovannucci E., Ascherio A., Rimm E.B., Colditz G.A., Stampfer M.J. and Willett W.C. (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann. Intern. Med. 122, 327–334

91. Larsson S.C. and Wolk A (2007) Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am. J. Clin. Nutr. 86, 556–565

92. Pischon T., Lahmann P.H., Boeing H., Friedenreich C., Norat T., Tjonneland A. et al. (2006) Body size and risk of colon and rectal cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC). J. Natl. Cancer Inst. 98, 920–931

93. JURCA, R., M. J. LAMONTE, T. S. CHURCH, C. P. EARNEST, S. J. FITZGERALD, C. E. BARLOW, A. N. JORDAN, J. B.KAMPERT, and S. N. BLAIR. Associations of Muscle Strength and Aerobic Fitness with Metabolic Syndrome in Men. Med. Sci. Sports Exerc., Vol. 36, No. 8, pp. 1301–1307, 2004.

94. TREUTH, M. S., A. S. RYAN, R. E. PRATLEY, et al. Effects of strength training on total and regional body composition in older men. J. Appl. Physiol. 77:614–620, 1994.

95. HONKOLA, A., T. FORSEN, and J. ERIKSSON. Resistance training improves the metabolic profile in individuals with type 2 diabetes. Acta Diabetol. 34:245–248, 1997.

96. HURLEY, B. F., J. M. HAGBERG, A. P. GOLDBERG, et al. Resistive training can reduce coronary risk factors without altering VO2max or percent body fat. Med. Sci. Sports Exerc. 20:150–154, 1988.

97. MILLER, W. J., W. M. SHERMAN, and J. L. IVY. Effect of strength training on glucose tolerance and post-glucose insulin response. Med. Sci. Sports Exerc. 16:539–543, 1984.

98. M S Treuth 1 , G R Hunter, T Kekes-Szabo, R L Weinsier, M I Goran, L Berland.Reduction in intra-abdominal adipose tissue after strength training in older women.J Appl Physiol (1985). 1995 Apr;78(4):1425-31.

99. Hung-Ting Chen 1 , Yu-Chun Chung 2 , Yu-Jen Chen 3 , Sung-Yen Ho 4 , Huey-June Wu 4.Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity.J Am Geriatr Soc. 2017 Apr;65(4):827-832.

100. J M Jakicic 1 , K Clark, E Coleman, J E Donnelly, J Foreyt, E Melanson, J Volek, S L Volpe, American College of Sports Medicine.American College of Sports Medicine position stand. Appropriate intervention strategies for weight loss and prevention of weight regain for adults.Med Sci Sports Exerc. 2001 Dec;33(12):2145-56.

101. Sivertsen H, Bjørkløf GH, Engedal K, Selbæk G, Helvik A. Depression and quality of life in older persons: A review. Dementia and Geriatric Cognitive Disorders. 2015;40(5–6):311–339.

102. Chachamovich E, Fleck M, Laidlaw K, Power M. Impact of major depression and subsyndromal symptoms on quality of life and attitudes toward aging in an international sample of older adults. The Gerontologist. 2008;48

(5):593–602.

103. Castro-Costa E, Dewey M, Stewart R, Banerjee S, Huppert F, Mendonca-Lima C, et al. Prevalence of depressive symptoms and syndromes in later life in ten European countries: The SHARE study. The British Journal of

Psychiatry: The Journal of Mental Science. 2007

104. Eriksson M, Lindström B. Antonovsky’s sense of coherence scale and the relation with health: A systematic review. Journal of Epidemiology and Community Health. 2006

105. Rejeski WJ, Mihalko SL. Physical activity and quality of life in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2001;56(2):23–35.

106. Netz Y, Wu MJ, Becker BJ, Tenenbaum G. Physical activity and psychological well-being in advanced age: A meta-analysis of intervention studies. Psychology and Aging. 2005;20(2):272–284.

107. Gillison FB, Skevington SM, Sato A, Standage M, Evangelidou S. The effects of exercise interventions on quality of life in clinical and healthy populations; a meta-analysis. Social Science & Medicine. 2009

108. Rhyner KT, Watts A. Exercise and depressive symptoms in older adults: A systematic meta-analytic review. Journal of Aging and Physical Activity. 2016

109. O’Connor PJ, Herring MP, Caravalho A. Mental health benefits of strength training in adults. American Journal of Lifestyle Medicine. 2010;4(5):377–396. doi: 10.1177/1559827610368771. [CrossRef] [Google Scholar]

110. Dunn AL, Trivedi MH, O’Neal HA. Physical activity dose-response effects on outcomes of depression and anxiety. Medicine and Science in Sports and Exercise. 2001;33:S587–S597.

111. Chien-Ning Tseng 1 , Bih-Shya Gau, Meei-Fang Lou.The effectiveness of exercise on improving cognitive function in older people: a systematic review.J Nurs Res. 2011 Jun;19(2):119-31.

112. Nakamoto H, Yoshitake Y, Takai Y, Kanehisa H, Kitamura T, Kawanishi M, Mori S. Knee extensor strength is associated with mini-mental state examination scores in elderly men. Eur J Appl Physiol. 2012;112:1945–1953.

113. Chen W-L, Peng T-C, Sun Y-S, Yang H-F, Liaw F-Y, Wu L-W, et al. Examining the association between quadriceps strength and cognitive performance in the elderly. Medicine (Baltimore) 2015;94:e1335.

114. Frith E, Loprinzi PD. The association between lower extremity muscular strength and cognitive function in a national sample of older adults. J Lifestyle Med. 2018;8:99–104.

115. Steves CJ, Mehta MM, Jackson SHD, Spector TD. Kicking back cognitive ageing: leg power predicts cognitive ageing after ten years in older female twins. Gerontology. 2016;62:138–149.

116. Pentikäinen H, Savonen K, Komulainen P, Kiviniemi V, Paajanen T, Kivipelto M, et al. Muscle strength and cognition in ageing men and women: the DR’s EXTRA study. Eur Geriatr Med. 2017;8:275–277.

117. Forte R, Boreham CAG, Leite JC, de Vito G, Brennan L, Gibney ER, Pesce C. Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin Interv Aging. 2013;8:19–27.

118. Coetsee Carla, Terblanche Elmarie. Cerebral oxygenation during cortical activation: the differential influence of three exercise training modalities. A randomized controlled trial. European Journal of Applied Physiology. 2017;117(8):1617–1627.

119. Nagamatsu LS, Handy TC, Hsu CL, Voss M, Liu-Ambrose T. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med. 2012;172:666–668.

120. Tsai C-L, Ukropec J, Ukropcová B, Pai M-C. An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. Neuroimage Clin. 2018;17:272–284.

121. Fiatarone Singh MA, Gates N, Saigal N et al. The Study of Mental and Resistance Training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: A randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc 2014;15:873–880.

122. J N Nielsen 1 , E A Richter.Regulation of glycogen synthase in skeletal muscle during exercise.Acta Physiol Scand. 2003 Aug;178(4):309-19.



user avatar   lu-luce 网友的相关建议: 
      

我这么认为的。。

首先那些所谓的论文资料,往往因为条件限制而存在偷换概念的情况。。比方说,一个人从事肌肉锻炼,同时为了肌肉锻炼选择早睡早起。使用规律饮食来减少体表脂肪。之后获得了比较健康的身体。

那么问题来了。在获得比较健康的身体的这些措施中,究竟哪些因素起了关键和重要的作用呢??其实答案非常明显。那就是连健身房从业人员都不得不承认:

三分在练,七分在吃。。

尽管健身房从业人员要你为了这个三分办卡。

因此上,还是要注意饮食。。至于肌肉锻炼这种事情,不用在意。只要不吃药,不过量,随遇而安就好了。

当然最重要的就是:

不要办卡。。


user avatar   kmlover 网友的相关建议: 
      

简单说几点:

一、肌肉是人体内最大的糖分储存仓库,也可以看做是“糖缓冲区”。体重80千克的成年男性体内糖分约0.52千克,其中0.4千克以肌糖原的形式储存于肌肉中,0.1千克以肝糖原的形式储存于肝脏中,0.02千克以血糖形式存在(此处数据引自人民体育出版社《运动生物化学》136页)。由于肝脏和血液储存糖分的能力后天基本无法改变,且其储量与肌肉无法相比。因此训练肌肉,提高其吸收和储存糖分的量,对预防糖尿病、脂肪肝及其并发症有重要作用。

二、肌肉训练 ,或力量训练,对相应的骨骼施加压力,从而增加了矿物质在骨骼中的沉积,显著提高骨密度,对于预防骨质疏松(尤其是更年期后的女性)、提高生命晚期生活质量有重要作用。

三、影响老年人生活质量和预期寿命的一个重要原因是随着年龄增长,肌肉纤维——特别是收缩快力量大的II型肌纤维——逐渐萎缩退化,导致在重心不稳时不能快速做出动作来回复身体平衡,结果因摔倒引发骨折。进行以增加肌肉力量和体积为目的的训练,可以有效减缓肌肉的退化,减少因摔倒骨折而影响生活质量和寿命的可能性。

四、肌肉训练有助于增强关节组织的牢固性和抗磨损能力,从而起到预防关节退行性病变,保持身体活动能力的作用,让你不至于在老年阶段丧失生活自理能力,常年卧床不起。

五、通过合理的肌肉力量训练,强化在日常生活中刺激不足易于萎缩的肌群,可以使人在坐、站立和行走时维持良好体态,不至于形成弓腰驼背耸肩等不良体态,也不易发生劳损。


user avatar    网友的相关建议: 
      

健身一个月,我的癌细胞指标下降了25%


user avatar   MrHo 网友的相关建议: 
      

之前在网上看到一组关于程序员的漫画,觉得用来回来这个问题很贴切!侵删

最后和程序员身边的朋友们嘱咐一句,就算程序员的工位再乱,也不要帮他整理。否则,当心会毁灭世界哦

-----------------------------------------我是分割线-----------------------------------------

请各位大佬支持一下我的这篇原创问答:




  

相关话题

  代餐奶昔真能减肥么?怎么选择? 
  自行车运动员有多坚强? 
  近5000元一瓶的救命药已纳入医保,为何在医院买不到? 
  为什么我77公斤体脂14%只用20公斤哑铃卧推我的身材还是比同健身房的人好?感觉不敢举大重量丢人? 
  寄生虫病有多可怕? 
  怎么看待《囚徒健身》中的强烈反对健身房训练? 
  小孩子哪些看似无理取闹的行为蕴含了深层的原因?怎么应对? 
  医学对人均寿命起到决定性的作用吗? 
  身体差是一种怎样的体验? 
  2 月 4 日广东新增本土确诊病例 6 例,目前当地情况如何? 

前一个讨论
历史上有哪些经典的谣言八卦?
下一个讨论
三代人都没有懂乐器的,孩子能学好乐器吗?学习钢琴每年需要多少钱?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利