百科问答小站 logo
百科问答小站 font logo



样本数据达到多少统计指标才有意义? 第1页

  

user avatar   edwin_hao_qing_han 网友的相关建议: 
      

这是个很好的问题,事实上从开始学回归的时候这个问题就会出现在实际操作中。当有两个点的时候,因为两点确立一直线,所以完美拟合, 为1。

同理也可以外推到如果有n个参数,又正好有n个观测值得话,如果变量之间线性不相关,那么回归出的超平面正好穿过所有的点,这个时候 仍然是1。

这是因为 代表的是模型拟合度,所以自然而然是越简单的模型(变量越少)越难拟合,数据越少的回归拟合度可能反而较高。

为什么越简单的模型越难拟合呢,考虑两个模型:

我们很容易看到模型1是嵌套在模型2之中的,当加入额外的回归项 之后,模型2的至少不低于模型1的。

而为什么数据越少的回归拟合度可能反而越高,这是因为数据越多你控制不到的变量就越多,控制不到的变量代表着数据中未观察到的异质性(unobserved heterogeneity),异质性的存在也会降低模型的拟合度。

那么数据是不是越少越好呢?当然不是,相反数据是越多越好,因为只有数据多了,你才可以构造更多的控制变量。最简单的例子:

如果只有一个观测值,那么你只能估计这样的模型 ,这个时候 是1。

当你有两个观测值的时候,你可以估计一个简单线性模型 ,这个时候 仍然是1,因为当你多了一个观测值的时候,你的数据中就包含了额外的信息,这样的信息可以帮助你识别截距。

当你有三个观测值的时候,那么你可以将模型拓展到非线性的情况下 ,这个时候如果 不是为1的常数或者 二元变量的话,回归存在唯一解并且 为1。

所以所谓的样本量越小统计指标越没有意义只是对于 理解上的偏误,从统计角度上来说样本数据当然是越大越好,就好像做菜一样,材料越多越容易做出好的菜肴。只是有些厨师可能选择太多了反而不知道怎么选,材料多了可能反而没办法发挥正常的厨艺。大样本的好处这里不说很多,只说一点,我们通常知道线性回归的系数方差是:

方差意味着估计带来的不确定性,这意味着当样本数量很大的时候,我们几乎可以百分百确定我们的估计到的系数就是真实的系数值。而当只有两个变量的时候因为 的无偏估计是:

如果我们有 的时候, ,这个时候 ,估计没有任何意义。




  

相关话题

  1 月 1 日消息西安累计确诊 1451 例,危重型 2 例,重型 11 例,对此目前当地情况如何? 
  wasserstein 距离的问题? 
  个人觉得抛硬币并不是真正的随机事件,和抛硬币时候的各种状态参量有关系,那么到底什么是真正的随机? 
  有没有适合入门统计遗传学的讲义或书? 
  为什么做机器学习的很少使用假设检验? 
  一把左轮能装六颗子弹,对着脑袋打,是装五发子弹开一枪死亡几率大,还是装一发子弹开五枪死亡几率大? 
  怎样理解博尔赫斯这句「我不相信民主,那是一种对统计学的亵渎」? 
  数学中的概率是有漏洞的吗?我随机在R中取一个数,取到1的概率为0,但也是有可能取到的,这是怎么回事? 
  如何通过很多组相互包含的换算数据求解尽可能精确的换算比例? 
  2021 年高考生想选统计学专业,主要学些什么?对今后最大的影响是什么? 

前一个讨论
如何评价「长平之战」?
下一个讨论
世界足坛历史上有哪些横空出世又迅速陨落的流星?





© 2025-04-23 - tinynew.org. All Rights Reserved.
© 2025-04-23 - tinynew.org. 保留所有权利