自然语言理解/处理应该是实现通用人工智能的关键挑战,但似乎不应是最难挑战。语言能力是人类智能的集中体现,不过构建在语言等能力基础之上的思辨、决策和创造等能力,似乎都还没纳入人工智能主要探讨的范围,也许这些更困难些。例如,如何让机器像人一样思考哲学问题,像人一样指挥战争或运营商业公司,或像人一样发明创造?这些问题似乎都比自然语言理解/处理更困难。
即使限定在自然语言处理,当前关心的问题也更偏重自然语言传递信息的工具属性上,也就是如何让计算机更准确地理解一句话的字面意思。人类语言更富魅力的“言有尽而意无穷”的特点,还远未被探索。
例如“这房间就是个烤箱”、“这个房间就是个盒子”,虽然句式相同但都不是字面的意思,前者表示这个房间很热,后者则表示这个房间很小。要让计算机理解这些话的意思,不是仅仅做词表示甚至句法分析能解决的。也例如,语言理解实际是一个多模态过程,需要综合除语言之外的视觉、听觉甚至触觉等多模态的富语境信息才能实现真正的语言理解。我个人觉得,这些应该是自然语言理解/处理比较困难的地方。
以上均为胡思乱想,没有经过认真考证,仅供交流。:)