谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
公务员和事业单位的区别是公务员是人员,事业单位是单位。
应该是行政编和事业编的区别。这俩有这几个不同。
1、所在单位性质不一样
公务员所在行政单位,是各国负责统筹管理经济社会秩序和国家公共资源,维护国家法律规定贯彻执行的公职人员。
事业单位是指由政府利用国有资产设立的,从事教育、科技、文化、卫生等活动的社会服务组织。事业单位接受政府领导,是表现形式为组织或机构的法人实体。
2、编制不同
行政编制是政府机关的正式人员。
事业编制是辅助编制,事业编制按照财政来源又可分为全额事业编制、差额事业编制和自筹自支事业编制三种。
3、经费来源不同。
事业编所需经费由公共财政支出
行政编由国家财政负担工。
4、待遇不同
事业编平时比行政编工资少比较多,而且没有车补。年终事业编会比公务员多些,因为事业绩效考核多。
事业编现在基本都是五险一金,公务员各地不同但失业险都没有,因为失业问题不太考虑。
5、薪资上升不同。
行政编除了熬年头,即工龄长薪级工资涨,就只能升职才能涨薪水。
而事业编,除了熬年头,升职之外,还可以通过职称聘用来涨工资,比如中级职称相当于正科工资。就说你专业扎实,你收入也不必你上司少,甚至还高。
6、职务上升不同
行政编的天花板很高,升迁机会大,而且可以一直升,直到顶。
事业单位基本都是行政机关下面的二级单位,所以升迁机会很少,因为职数少。
所以看绝对前景是公务员要好于事业人员。
但是对基层来说很多时候相对前景事业编好些,主要是薪资的问题,很多基层公务员一辈子升不到副科实职,待遇涨的慢。但是事业编努力点拿到高级职称,就能享受处级待遇。
最后对于哪个好考的问题,这个得看具体职位,但是按总数和比较来说公务员要难些。
谢邀,关于19世纪的西班牙的书,我看过不少,几乎全部是英文或西班牙文的,列举一些:
Spain, 1833-2002: People and State,by Mary Vincent这本讲了西班牙从1833年费尔南多七世去世后,围绕王位继承爆发的第一次卡洛斯战争到2002年的历史。
The End of the Spanish Empire, 1898-1923,by Sebastian Balfour这本讲了西班牙从1898年美西战争惨败到1923年里维拉借助里夫战争前期西班牙的惨败建立军人政权的历史,并且详细阐述了西班牙帝国终结的社会、经济、政治、军事、文化根源。
The Peninsular War: A New History,by Charles Esdaile这本是维多利亚时代西班牙的前传,讲了半岛战争及其前后的西班牙,既有各次战役和游击战,也有对于这一时期西班牙社会、经济的描写。
A Military History of Modern Spain: From the Napoleonic Era to the International War on Terror,by Wayne H. Bowen,这本书讲了西班牙从拿破仑时代到反恐战争的军事史,其中对三次卡洛斯战争和西班牙的军事改革的描写十分详细。
Bourbon Spain,by John Lynch,这本是讲波旁王朝西班牙从1700年西班牙王位继承战争到1808年半岛战争开始时的历史,虽然不是维多利亚时代,但是讲西班牙波旁改革时期的变革非常详细,我超级喜欢这本书,所以推荐一下。
Imagining Spain : historical myth & national identity, by Henry Kamen,这本书讲了西班牙从19世纪开始塑造民族认同的历史。
The Origins of Military Power in Spain 1800-1854,by E. Christiansen,这本书讲了拿破仑战争前到1854年自由派军事政变前,西班牙军事的发展史及其对政治的影响。
找到出处的先想起这么多,别的以后再补充
谢邀,关于19世纪的西班牙的书,我看过不少,几乎全部是英文或西班牙文的,列举一些:
Spain, 1833-2002: People and State,by Mary Vincent这本讲了西班牙从1833年费尔南多七世去世后,围绕王位继承爆发的第一次卡洛斯战争到2002年的历史。
The End of the Spanish Empire, 1898-1923,by Sebastian Balfour这本讲了西班牙从1898年美西战争惨败到1923年里维拉借助里夫战争前期西班牙的惨败建立军人政权的历史,并且详细阐述了西班牙帝国终结的社会、经济、政治、军事、文化根源。
The Peninsular War: A New History,by Charles Esdaile这本是维多利亚时代西班牙的前传,讲了半岛战争及其前后的西班牙,既有各次战役和游击战,也有对于这一时期西班牙社会、经济的描写。
A Military History of Modern Spain: From the Napoleonic Era to the International War on Terror,by Wayne H. Bowen,这本书讲了西班牙从拿破仑时代到反恐战争的军事史,其中对三次卡洛斯战争和西班牙的军事改革的描写十分详细。
Bourbon Spain,by John Lynch,这本是讲波旁王朝西班牙从1700年西班牙王位继承战争到1808年半岛战争开始时的历史,虽然不是维多利亚时代,但是讲西班牙波旁改革时期的变革非常详细,我超级喜欢这本书,所以推荐一下。
Imagining Spain : historical myth & national identity, by Henry Kamen,这本书讲了西班牙从19世纪开始塑造民族认同的历史。
The Origins of Military Power in Spain 1800-1854,by E. Christiansen,这本书讲了拿破仑战争前到1854年自由派军事政变前,西班牙军事的发展史及其对政治的影响。
找到出处的先想起这么多,别的以后再补充