媒体不要总是想搞个大新闻,搞得一副越南和果子药丸的样子。
苹果手机的备货,要比发布会早一段时间,如果备货不到预期,苹果宁可延期,去年苹果12发布会延期就是一个典型例子。
苹果12发布晚了一个月,因为去年疫情属于突发事件,全球供应链都受影响,影响到了苹果12的备货。
今年苹果如期开了发布会,说明苹果13的备货做得还行。
这二百万人听着唬人,但是和苹果关系不大,苹果全越南都不可能有200w工人。
越南上百万工人逃离工厂,不一定是疫情导致的,更有可能是秋收。
部分人可能对工人有误解,认为工人的身份和工作只是工人,他们一年十二个月都得在工厂。
实际上很多工人并不是长期的合同工人,而是临时工,派遣工。
无论是越北还是越南,还是其它东南亚国家,农民的数量都是很大的,他们有土地,但种地是不挣钱的。
他们在农闲的时候去工厂当派遣工人,农忙自然要回去种地。
解决百万工人逃离工厂的办法很容易,找几个大专中专甚至本科学校,用学生工顶上就完事了。
评论区有人认为工厂上班比农村种地钱多,所以农业户籍工人不会农忙秋收。
但是在中国有亦工亦农的农民工,我想越南应该也有这种群体吧。
大家都在说停产停工产业转移的事,那我就不跟着走了,咱换个角度。
疫情对越南的影响当然很不好,不但抢占疫情时代生产空白的目标被打断,也使得去年树立起来的疫情防控正面形象遭到了破坏。
但塞翁失马,焉知非福。这对越南来说,未必全是坏事。
大家都知道越南南方亲美北方亲华,南北之争由来已久。
而南方凭这些年的经济优势,在政治上的话语权越来越大。前总理阮晋勇居然在工作报告中光明正大的把学习美国写在里面,南方势力之强可见一斑。
2016年起,越南政局开始呈现北弱南强的局面,代表北方的阮富仲虽然是一把手,但已经78岁高龄,一旦离开,越南政局将向南方猛烈偏转。
有一句国足常用的话,送给阮富仲恰到好处,那就是:留给他们的时间不多了。
可巧不巧,疫情出现了。而且还就得是眼下这轮疫情,去年那都不算事。
从目前疫情对越南的影响来看,还是挺严重的。
去年最艰苦的第二季度,GDP也仍然保持正数,实现了0.39%的增幅。而今年9月底通报的越南GDP增幅则是-6.17%,这算是破了有季度通报以来的记录了。
在这轮疫情的侵扰下,越南多地工厂停产,其中,建筑业在2021年第三季度同比下降了0.58%,采矿业同比下跌7.17%,平时表现动不动十几二十的制造业也骤降到6.05%,服务业因为受社交距离影响,更是遭受重挫。
但经济是南方的基本盘。经济负面影响越大,停工待产的工人和企业越多,南方越吃力。所以这波疫情反而给北方带来了一次机会。
不过,还是上面提到的,阮富仲已经78岁了,留给他布局的时间不多了。而这次疫情之后越南政坛会出现什么样的变化,大家都在拭目以待。
欢迎关注财经杂感:
不是针对谁,但这个问题下 @鲁超 的高票答案中存在很多或大或小的错误。科普很不容易,要兼顾正确性和通俗性,但不能为了通俗就用一些似是而非的文字游戏来妥协,甚至牺牲最基本的正确性。所以在这里写个回答分析一下其中一些:
1. 鲁超在回答中写道:
没想到从1937年开始,μ子、中微子、π介子各种奇异粒子接连在回旋加速器中被捕捉到。
这是错的。
μ子最早是于1936年被Carl D. Anderson和Seth Neddermeyer在宇宙射线中发现的。中微子最早是于1956年被Clyde L. Cowan和Frederick Reines利用核反应堆作为中微子源探测到的。π子最早是于1947年被 Cecil Powell、César Lattes、Giuseppe Occhialini等人利用宇宙射线探测到的。这些粒子最早的探测都跟回旋加速器没有任何关系。
2. 鲁超在回答中写道:
1956年,物理学家首先发现θ子和τ子的自旋、质量、寿命、电荷等性质完全相同,让人不得不怀疑这俩货实际上是同一种粒子。但另一方面,θ子会衰变成两个π介子,而τ子会衰变成三个π介子,这又如何解释。
这种情况下,两个在美国的中国小伙子杨振宁和李政道对此开展研究,他们提出:这两种粒子实际就是一种,之所以衰变方式不一样,是因为衰变的时候发生了弱相互作用,在微观世界,弱相互作用的宇称不守恒。
这段话也是有问题的。
首先,当年的τ-θ难题的核心并不是性质相同的粒子有两种不同的衰变模式。在物理学中,无论是基本粒子还是复合粒子,有多种变化途径是很正常很常见的现象。比如Z玻色子就既可以变成一对正反电子型中微子,也可以变成一对正反μ子型中微子,还可以变成一对正反τ子型中微子。τ-θ难题的关键在于π子的parity是 -1,而parity作为一个量子数是通过相乘(而不是相加)来复合的,因此两种衰变模式的产物的parity不相等,这才是τ-θ难题的关键。
其次,当时弱相互作用已经被发现了,物理学家也早就知道τ子和θ子衰变为π子是弱相互作用的过程。因此杨振宁和李政道提出的并不是τ子和θ子“衰变的时候发生了弱相互作用”这种在当时人尽皆知的废话。
3. 鲁超在回答中写道:
稍有常识的人都知道,镜子里的人跟自己不是完全一样的,左右互换了。但镜子里的人也必须遵守同样的物理定律,我跳他也跳,我蹲他也蹲,不可能看到我在刷牙,而他却在洗脸。这就是宇称守恒!
这种对宇称守恒的理解是不正确的。
即使镜子里的人与镜子外的人有不一样的动作和行为,也不代表宇称不守恒。反过来说,即使镜子里的人与镜子外的人的动作和行为完全一致,也不代表宇称守恒。宇称守恒指的是在宇称变换下物理定律不发生变化。镜子内外的人的行为是否相同跟物理定律并没有关系。
4.鲁超在回答中写道:
当吴健雄的论文发表之后,第二天,《纽约时报》就以头版报道了吴健雄实验的结果。
这是不符合历史事实的错误。
《纽约时报》对吴健雄实验的头版报道是在1957年1月15日哥伦比亚大学的新闻发布会的第二天,而吴健雄等人的论文《Experimental Test of Parity Conservation in Beta Decay》发表于1957年2月15日。(见文末截图)
5. 鲁超在回答中写道:
动量守恒代表的是空间平移的对称性,空间的性质在哪里都是一样的,并不因为你在南京而不在上海,你就会胖一点或者跑得快一点。
角动量守恒代表的是空间的各项同性,不管转多大角度,物理定律都是一样的,如果你要说你转多了头晕,不是由于空间出错了,而是你的生理特征,这也由更深层次的物理学定律所支配。
能量守恒代表的是时间平移的对称性,时间总是均匀的流逝着,时钟不可能一会快一会慢。
这种表述是错的。
空间平移不变性指的是物理定律在空间平移的变换下保持不变。空间平移不变性跟空间性质没有什么直接关系,也不能推出 “空间的性质在哪里都是一样”。一个简单的例子就是Schwarzschild时空,在这个球状对称的时空中,空间性质并不是处处相同,因为不同半径处的曲率等性质显然不同。但其中的物理定律还是有空间平移不变性。
同理,时间平移不变性也跟时间是否均匀流逝没有什么直接关系。
6. 鲁超在回答中写道:
这就是伟大的“诺特定理”,它体现了守恒律的美。
而现在吴健雄的实验告诉大家,原来我们的宇宙竟然有一个不守恒的地方,而且是我们之前最意想不到的地方:镜像不对称,大多数人都首先表示不能接受,泡利“左撇子”的论调正是代表了大家的心声
这种对诺特定理的理解是错的。
诺特定理中涉及到的与守恒律相关的对称性是连续对称性。宇称变换是离散变换而不是连续变换,宇称对称性(和宇称守恒)跟诺特定理并没有直接关系。
7. 鲁超在回答中写道:
一直以来,电荷对称性也被视为宇宙真理,每一种粒子都有其对应的一种反粒子,除了电荷以外,其他性质几乎完全一样。
在粒子物理学中,charge-conjugate symmetry并不能翻译为电荷对称性。因为charge-conjugate transformation涉及到的不只是电荷,还包括与强相互作用相关的色荷(color charge)等其他charge quantum number。在charge-conjugate transformation下,粒子变成相应的反粒子,正反粒子的区别不仅仅在于电荷,还在于其他charge quantum number。这也是为什么电荷为零的中子跟反中子不相同。
另外,除了这些charge quantum number,正反粒子的其他性质就是完全一样,并不需要加上一个“几乎”。
8. 鲁超在回答中写道:
对称破缺的一种比喻,小球只有在中央的顶点才是稳定的、对称的,当受到微扰,它就会落下来,产生运动,并发出各种叮呤咣啷。稳定的、对称的、孤芳自赏的小球甚是无趣,叮呤咣啷才是我们宇宙的精彩。
这是错的。
在“墨西哥帽”模型中,中央顶点对于小球来说是不稳定的,这也是为什么小球会倾向于发生对称性破缺而从顶点移动到较低的点。
不是针对谁,但这个问题下 @鲁超 的高票答案中存在很多或大或小的错误。科普很不容易,要兼顾正确性和通俗性,但不能为了通俗就用一些似是而非的文字游戏来妥协,甚至牺牲最基本的正确性。所以在这里写个回答分析一下其中一些:
1. 鲁超在回答中写道:
没想到从1937年开始,μ子、中微子、π介子各种奇异粒子接连在回旋加速器中被捕捉到。
这是错的。
μ子最早是于1936年被Carl D. Anderson和Seth Neddermeyer在宇宙射线中发现的。中微子最早是于1956年被Clyde L. Cowan和Frederick Reines利用核反应堆作为中微子源探测到的。π子最早是于1947年被 Cecil Powell、César Lattes、Giuseppe Occhialini等人利用宇宙射线探测到的。这些粒子最早的探测都跟回旋加速器没有任何关系。
2. 鲁超在回答中写道:
1956年,物理学家首先发现θ子和τ子的自旋、质量、寿命、电荷等性质完全相同,让人不得不怀疑这俩货实际上是同一种粒子。但另一方面,θ子会衰变成两个π介子,而τ子会衰变成三个π介子,这又如何解释。
这种情况下,两个在美国的中国小伙子杨振宁和李政道对此开展研究,他们提出:这两种粒子实际就是一种,之所以衰变方式不一样,是因为衰变的时候发生了弱相互作用,在微观世界,弱相互作用的宇称不守恒。
这段话也是有问题的。
首先,当年的τ-θ难题的核心并不是性质相同的粒子有两种不同的衰变模式。在物理学中,无论是基本粒子还是复合粒子,有多种变化途径是很正常很常见的现象。比如Z玻色子就既可以变成一对正反电子型中微子,也可以变成一对正反μ子型中微子,还可以变成一对正反τ子型中微子。τ-θ难题的关键在于π子的parity是 -1,而parity作为一个量子数是通过相乘(而不是相加)来复合的,因此两种衰变模式的产物的parity不相等,这才是τ-θ难题的关键。
其次,当时弱相互作用已经被发现了,物理学家也早就知道τ子和θ子衰变为π子是弱相互作用的过程。因此杨振宁和李政道提出的并不是τ子和θ子“衰变的时候发生了弱相互作用”这种在当时人尽皆知的废话。
3. 鲁超在回答中写道:
稍有常识的人都知道,镜子里的人跟自己不是完全一样的,左右互换了。但镜子里的人也必须遵守同样的物理定律,我跳他也跳,我蹲他也蹲,不可能看到我在刷牙,而他却在洗脸。这就是宇称守恒!
这种对宇称守恒的理解是不正确的。
即使镜子里的人与镜子外的人有不一样的动作和行为,也不代表宇称不守恒。反过来说,即使镜子里的人与镜子外的人的动作和行为完全一致,也不代表宇称守恒。宇称守恒指的是在宇称变换下物理定律不发生变化。镜子内外的人的行为是否相同跟物理定律并没有关系。
4.鲁超在回答中写道:
当吴健雄的论文发表之后,第二天,《纽约时报》就以头版报道了吴健雄实验的结果。
这是不符合历史事实的错误。
《纽约时报》对吴健雄实验的头版报道是在1957年1月15日哥伦比亚大学的新闻发布会的第二天,而吴健雄等人的论文《Experimental Test of Parity Conservation in Beta Decay》发表于1957年2月15日。(见文末截图)
5. 鲁超在回答中写道:
动量守恒代表的是空间平移的对称性,空间的性质在哪里都是一样的,并不因为你在南京而不在上海,你就会胖一点或者跑得快一点。
角动量守恒代表的是空间的各项同性,不管转多大角度,物理定律都是一样的,如果你要说你转多了头晕,不是由于空间出错了,而是你的生理特征,这也由更深层次的物理学定律所支配。
能量守恒代表的是时间平移的对称性,时间总是均匀的流逝着,时钟不可能一会快一会慢。
这种表述是错的。
空间平移不变性指的是物理定律在空间平移的变换下保持不变。空间平移不变性跟空间性质没有什么直接关系,也不能推出 “空间的性质在哪里都是一样”。一个简单的例子就是Schwarzschild时空,在这个球状对称的时空中,空间性质并不是处处相同,因为不同半径处的曲率等性质显然不同。但其中的物理定律还是有空间平移不变性。
同理,时间平移不变性也跟时间是否均匀流逝没有什么直接关系。
6. 鲁超在回答中写道:
这就是伟大的“诺特定理”,它体现了守恒律的美。
而现在吴健雄的实验告诉大家,原来我们的宇宙竟然有一个不守恒的地方,而且是我们之前最意想不到的地方:镜像不对称,大多数人都首先表示不能接受,泡利“左撇子”的论调正是代表了大家的心声
这种对诺特定理的理解是错的。
诺特定理中涉及到的与守恒律相关的对称性是连续对称性。宇称变换是离散变换而不是连续变换,宇称对称性(和宇称守恒)跟诺特定理并没有直接关系。
7. 鲁超在回答中写道:
一直以来,电荷对称性也被视为宇宙真理,每一种粒子都有其对应的一种反粒子,除了电荷以外,其他性质几乎完全一样。
在粒子物理学中,charge-conjugate symmetry并不能翻译为电荷对称性。因为charge-conjugate transformation涉及到的不只是电荷,还包括与强相互作用相关的色荷(color charge)等其他charge quantum number。在charge-conjugate transformation下,粒子变成相应的反粒子,正反粒子的区别不仅仅在于电荷,还在于其他charge quantum number。这也是为什么电荷为零的中子跟反中子不相同。
另外,除了这些charge quantum number,正反粒子的其他性质就是完全一样,并不需要加上一个“几乎”。
8. 鲁超在回答中写道:
对称破缺的一种比喻,小球只有在中央的顶点才是稳定的、对称的,当受到微扰,它就会落下来,产生运动,并发出各种叮呤咣啷。稳定的、对称的、孤芳自赏的小球甚是无趣,叮呤咣啷才是我们宇宙的精彩。
这是错的。
在“墨西哥帽”模型中,中央顶点对于小球来说是不稳定的,这也是为什么小球会倾向于发生对称性破缺而从顶点移动到较低的点。