我爸妈,庸医的最高境界。
我爸,南大生物系毕业,正高,研究方向是香烟烟气致癌性,然后每天一包烟。
我妈,上医大公共卫生系毕业,副高,研究方向是各类食品添加剂。目前三高,关键还不肯吃药,看着那高高的血糖,我担心的要死。对了,满满一箱的零食,高油高糖的那种。
家庭2个洁癖我从小生活在无菌中,结果抵抗力很差,经常感冒发烧或者拉肚子,2个教授会说看医生吃药没用,叫我多睡觉多喝热水,拉肚子拉干净饿2天就好了。
感觉学医的的确是挺无情的,看生死很淡薄,小时候有点伤心。
我爸妈,庸医的最高境界。
我爸,南大生物系毕业,正高,研究方向是香烟烟气致癌性,然后每天一包烟。
我妈,上医大公共卫生系毕业,副高,研究方向是各类食品添加剂。目前三高,关键还不肯吃药,看着那高高的血糖,我担心的要死。对了,满满一箱的零食,高油高糖的那种。
家庭2个洁癖我从小生活在无菌中,结果抵抗力很差,经常感冒发烧或者拉肚子,2个教授会说看医生吃药没用,叫我多睡觉多喝热水,拉肚子拉干净饿2天就好了。
感觉学医的的确是挺无情的,看生死很淡薄,小时候有点伤心。
我爸妈,庸医的最高境界。
我爸,南大生物系毕业,正高,研究方向是香烟烟气致癌性,然后每天一包烟。
我妈,上医大公共卫生系毕业,副高,研究方向是各类食品添加剂。目前三高,关键还不肯吃药,看着那高高的血糖,我担心的要死。对了,满满一箱的零食,高油高糖的那种。
家庭2个洁癖我从小生活在无菌中,结果抵抗力很差,经常感冒发烧或者拉肚子,2个教授会说看医生吃药没用,叫我多睡觉多喝热水,拉肚子拉干净饿2天就好了。
感觉学医的的确是挺无情的,看生死很淡薄,小时候有点伤心。
我爸妈,庸医的最高境界。
我爸,南大生物系毕业,正高,研究方向是香烟烟气致癌性,然后每天一包烟。
我妈,上医大公共卫生系毕业,副高,研究方向是各类食品添加剂。目前三高,关键还不肯吃药,看着那高高的血糖,我担心的要死。对了,满满一箱的零食,高油高糖的那种。
家庭2个洁癖我从小生活在无菌中,结果抵抗力很差,经常感冒发烧或者拉肚子,2个教授会说看医生吃药没用,叫我多睡觉多喝热水,拉肚子拉干净饿2天就好了。
感觉学医的的确是挺无情的,看生死很淡薄,小时候有点伤心。
技术上:光刻机的制造和使用工艺。
金融上:打破美元的霸权。
军事上:台湾问题。
别的问题(房产绑架经济、老龄化、东西部平衡等)都是发展中的问题,都是可能通过发展来解决的。
上面列的3个问题是当前面临的核心问题。
去打游戏
建议不要探讨该事件,
说错了会____,
说对了会____。
台湾、香港的主流思想,是被大陆革命洪流扫出去的枯(L)枝(a)败(j)叶(i),与当地的殖民地文化传统奇妙地结合起来,形成了大陆人很难理解的思想模式。
台湾人那种想认爹的心态是深入骨髓的。
下面有人说所以港台人鄙视大陆。
他们的鄙视是:你大陆仔竟然想和洋人一争高下,你大陆人有这种想法,还是人吗?不把洋人放在眼里,真不敢想你们会做出什么可怕的事来!你们不怕洋人,说明你们是猪呀。
他们几十年受国民党的宣传:如果不是苏联支持四野几百辆坦克,几千门大炮,现在大陆还是国民党的天下。
所以他们对苏联(俄罗斯)的仇恨与恐惧是刻在DNA里的。
他们从没有什么自强不息,艰苦奋斗,独立自主的概念。
参见电影《英雄虎胆》台词:伟大的盟军朋友在仁川登陆了,我们就要赢了。
请你问他:一野才2万人,没有任何苏联武器,怎么就能把胡宗南20万灭了?
我早就反复说过:毛主席尽管宣传工作做的好,但是毛主席从来不指望靠宣传让蒋介石加入共产党。
这些le se,不要对它们抱有希望。消灭它们!
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#
谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?
***** ***** *****
上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:
以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。
所以,题主的命题看起来好像不太成立。
当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:
根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。
用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。
什么叫 “归类假象” 呢?
就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。
就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。
就本题的来说,我们不难理解彩民们的想法:
他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。
以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。
彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:
这个推论有道理吗?看起来好像很像回事呢。
但实际上,上面的那句话是不对的,正确的说法是:
这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。
举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。
假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合
然而,对彩民来说,
中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例
如果买了 100 次彩票,每次 1 注,
毫无差异。
以上的推导非常简单,连小学生都很容易理解吧?
但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。
举个例子,这是一个古老的故事:
曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。
你发现问题在哪里了吗?
#