百科问答小站 logo
百科问答小站 font logo



2021年,AI将何去何从?哪些技术与应用是下一个风口?能否推荐相关图书? 第1页

  

user avatar   huangzhe 网友的相关建议: 
      

其现在也很难判断哪个是真正的风口,我建议是打好基础,不过我可以稍微几个有研究前景的方向,以供读者参考。

1.巨量语言模型

要说最明显的风口,我认为是巨量语言模型。从2020年1750亿参数的GPT-3,到今年的2457亿参数的源1.0,5300亿参数的MT-NLG等等,都表现出了无与伦比的语言理解和语言生成能力。

风口很明显,但是如果你要去抓,其实还是很难。你能看到风口在那里,但你学不到,因为门槛太高了。不仅仅是知识门槛,也是资源门槛。

从BERT开始,NLP就不属于个人研究者了。参数已经是亿级,十亿,百亿,千亿级了。不过了解下巨量语言模型发展的过程,以及其原理,还是很有必要的。下图是预训练语言模型的发展脉络。

不过这些模型都有一个名字,那就是Transformer-based model。如何学习Transformer-based model?这里推荐一篇文章。

除此之外,还是有一些学习成本相对低一些的风口,这里再讲两个。


2.隐私保护的AI

最近几年,我们可以看到全球多个国家都针对个人数据和隐私保护建立了相关的法规,例如欧盟的GDPR。我国也在近日颁布了个人信息保护法。可以看到,保护隐私和个人数据,是未来的大趋势,如何在保护隐私的同时打破数据孤岛,让AI学习的同时不侵犯隐私,是未来很多年重要的研究课题。

其中一种保护隐私的AI技术是联邦学习, 其设计目标是保障信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或之间开展高效率的机器学习。联邦学习并不是一个模型,而是一种设计,可使用在多种机器学习算法中,例如神经网络,随机森林等算法。

书籍的话推荐经典的这本

知乎的话推荐 @lokinko 的专栏:


3.图神经网络

图神经网络(Graph Neural Networks, GNNs)是一种基于图结构的深度学习方法。图神经网络的应用场景多种多样,在端对端学习、推理、可解释性方面展示出了优势。

Graph Neural Network 在2019年到 2020年之间,成为各大顶会的增长最热门的关键词。


入门的话,我推荐《深入浅出图神经网络》





  

相关话题

  如何评价deepmind最新在nature上发表的论文《在人工网络中用网格样表征进行基于向量的导航》? 
  计算机专业现在真的不吃香吗?为什么我身边的人都不让我报计算机专业? 
  在数据分析、挖掘方面,有哪些好书值得推荐? 
  有哪些优秀的 AI 相关的「一句话科幻」? 
  如何看待 B 站华为鸿蒙系统发布会直播的前一两分钟被封? 
  如何评价野狐的国产围棋 AI「绝艺」? 
  从围棋角度看李世石与 AlphaGo 的第二局比赛有哪些关键之处? 
  如何看待央视频开始收费? 
  2018高考结束了,想学人工智能,现在有哪些AI专业可以填报? 
  AlphaGo 有没有「棋风」?它在下棋时会犯错吗? 

前一个讨论
万科内部发文称「节衣缩食,花小钱办大事,打造战时氛围」,目前企业情况如何?
下一个讨论
为什么新增特征有时候会对模型带来负面影响?





© 2025-03-25 - tinynew.org. All Rights Reserved.
© 2025-03-25 - tinynew.org. 保留所有权利