百科问答小站 logo
百科问答小站 font logo



你所在的专业领域,有哪些综述文献推荐给刚入行的朋友看? 第1页

  

user avatar   li-yiming-79-73 网友的相关建议: 
      

那我必推荐我们去年在 后门学习 领域写的survey。感谢大家的支持,目前这也是后门学习领域被引次数最多的综述。

在这篇survey中我们对现有的文章进行了分类和总结,并加入了很多我们的思考。同时,我们也在Github上维护了一个资源汇总的仓库:


后门学习(backdoor learning)是一个重要且正在蓬勃发展的领域。与对抗学习(adversarial learning)类似,后门学习也研究深度学习模型的安全性问题,其研究主要包括两大领域:后门攻击(backdoor attacks)及后门防御(backdoor defenses)。

顾名思义,后门攻击希望在模型的训练过程中通过某种方式在模型中埋藏后门(backdoor),埋藏好的后门通过攻击者预先设定的触发器(trigger)激发。在后门未被激发时,被攻击的模型具有和正常模型类似的表现;而当模型中埋藏的后门被攻击者激活时,模型的输出变为攻击者预先指定的标签(target label)以达到恶意的目的。后门攻击可以发生在训练过程非完全受控的很多场景中,例如使用第三方数据集、使用第三方平台进行训练、直接调用第三方模型,因此对模型的安全性造成了巨大威胁。

目前,对训练数据进行投毒是后门攻击中最直接,最常见的方法。 如下图所示,在基于投毒的后门攻击(poisoning-based attacks)中,攻击者通过预先设置的触发器(例如一个小的local patch)来修改一些训练样本。 这些经过修改的样本的标签讲被攻击者指定的目标标签替换,生成被投毒样本(poisoned samples)。这些被投毒样本与正常样本将会被同时用于训练,以得到带后门的模型。值得一提的是,触发器不一定是可见的,被投毒样品的真实标签也不一定与目标标签不同,这增加了后门攻击的隐蔽性。 当然,目前也有一些不基于投毒的后门攻击方法被提出,也取得了不错的效果。

相对于攻击来说,后门防御的类型要更为丰富与复杂。直观上来说,后门攻击就像是使用对应的钥匙开门,因此后门防御也可以从 触发器-后门不匹配、后门移除、触发器移除 这三种设计范式下进行思考与讨论。 General Idea如下图所示:

尽管存在很多相似之处,后门学习事实上与对抗学习之间仍然存在很大的区别。一般来说,对抗攻击关注的是模型预测过程的安全性问题,而后门攻击关注的是模型训练过程的安全性。此外,后门攻击与传统的数据投毒(data poisoning)[另一个关注模型训练过程安全性的研究领域]也有很大的区别:数据投毒的目的是为了降低模型的泛化性能(即希望训练好的模型在测试集上不能有良好的表现),而后门攻击在正常设定下具有和正常模型类似的表现




  

相关话题

  有哪些高效看文献的方法? 
  研究生这种情况是否要换导师? 
  自然科学领域,什么样的研究才算是有「好品位」? 
  有哪些由中国团队在顶刊发表的文章创造了巨大的社会经济效益? 
  2016~2017 年大陆高校招聘青年教师的行情是怎样的? 
  如何看待我国将斥资十亿发展国内学术期刊? 
  生化环材及医学领域十分文章烂大街了吗? 
  院士能够撬动的资源有多少? 
  有哪些可以免费下载论文 文献的网站? 
  如何评价耿美玉在 Cell Research 回复饶毅,称其知识储备不足,质疑非常「荒谬」? 

前一个讨论
iQOOneo5 使用体验如何?
下一个讨论
化合物难溶的本质是什么?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利