百科问答小站 logo
百科问答小站 font logo



如何评价最近火热的对比学习,会引领预训练模型新的范式嘛? 第1页

  

user avatar   chen-jia-yu-65-36 网友的相关建议: 
      

引用lecun的一张图,谈一谈对CV和NLP中无监督预训练的看法

lecun通过Low dim -> High dim、Discrete -> Continuous和Less uncertainty -> More uncertainty三个维度来表示CV和NLP中不同无监督方法的位置。文本是离散的,不确定性低,维度低;而图像是连续的,不确定性高,维度高。模态的不同,导致了无监督的处理方式上的不同。

NLP任务因为确定性更高,生成式无监督预训练方法可以非常好进行预测(如BERT),而由于CV任务不确定性更高,导致需要设计更自由灵活的方法,对比方法相比于生成方法自由度更高,可能更加适合CV任务作为无监督预训练方法。

猜测未来NLP领域生成式和判别式会出现并存的局面,sentence级别任务倾向于使用判别式,word级别任务倾向于使用生成式。而CV领域判别式会占主导地位,一方面由于图像是二维的,生成式计算量会更庞大,另一方面判别式的自由度会更高一些。


欢迎关注Smarter,构建CV世界观,输出优质内容

欢迎加入Smarter交流群,添加微信「cjy094617」,备注「学校-方向」即可




  

相关话题

  pytorch ddp训练中一个node fail,导致整个训练失败,有可能解决吗? 
  为什么opencv使用BRG模式读入图像? 
  实验室一块GPU都没有怎么做深度学习? 
  如何评价最新的Octave Convolution? 
  KL散度衡量的是两个概率分布的距离吗? 
  深度神经网络(DNN)是否模拟了人类大脑皮层结构? 
  实体提取任务中使用BERT-CRF时,CRF根据数据统计可以得到转移概率,为啥还要训练呢? 
  为什么这么多 NLP 大牛硕士毕业去企业不留在学术界? 
  如何评价 NVIDIA 发布的 DGX-1? 
  如何看待Transformer在CV上的应用前景,未来有可能替代CNN吗? 

前一个讨论
如何系统地学习数据挖掘?
下一个讨论
为什么考研还这么多往生化环材土木水利的坑里跳的,是他们还没看见劝退文吗?





© 2025-04-13 - tinynew.org. All Rights Reserved.
© 2025-04-13 - tinynew.org. 保留所有权利