百科问答小站 logo
百科问答小站 font logo



能否介绍一下强化学习(Reinforcement Learning),以及与监督学习的不同? 第1页

  

user avatar   Cybernetic1 网友的相关建议: 
      

我在外国博客上写过一些基於人工智能的文章,有些搬到了博客园,上面转录的是其中一篇:

什么是强化学习?

我正在研究的 AI architecture 是用强化学习控制 recurrent 神经网络,我相信这个设置可以做到逻辑推理和答问题的功能,基本上就是 strong AI。 但还有一些未解决的细节。 论文的标题是《游荡在思考的迷宫中》,即将发表。

補充: 還有一點,就是監督學習的問題可以很容易化為強化學習的問題(雖然這樣增加了複雜性而沒有益處),但反之則沒有一般的辦法。 見:Reinforcement Learning and its Relationship to Supervised Learning,Barto and Dietterich, 2004.

"But is it possible to do this the other way around: to convert a reinforcement learning task into a supervised learning task?

"In general, there is no way to do this. The key difficulty is that whereas in supervised learning, the goal is to reconstruct the unknown function f that assigns output values y to data points x, in reinforcement learning, the goal is to find the input x* that gives the maximum reward R(x*).

"Nonetheless, is there a way that we could apply ideas from supervised learning to perform reinforcement learning? Suppose, for example, that we are given a set of training examples of the form (xi, R(xi)), where the xi are points and the R(xi) are the corresponding observed rewards. In supervised learning, we would attempt to find a function h that approximates R well. If h were a perfect approximation of R, then we could find x* by applying standard optimization algorithms to h."




  

相关话题

  为何总感觉人工智能和神经科学(神经网络)被绑在一起? 
  人工「神经网络」技术在信息处理上有何特点,工作原理是什么? 
  如何看待商汤科技高管半年薪酬近12 亿? 
  人工智能在生活中的应用都有哪些? 
  很多人类以为的惊天妙手在AI处被证实为很普通甚至更差。为何那么多人都看不出皇帝的新装? 
  你觉得什么样的清洁能源可以让世界变得更美好? 
  特朗普发起贸易战,会对中国科技、电信、AI 等行业带来哪些影响? 
  科大讯飞用人类翻译的内容冒充智能 AI 同传一事是否属实?AI 同传「造假」是否普遍? 
  机器学习系统MLSys中有哪些比较有前途的研究方向? 
  如果人类的意识被科学家证明只是一种物质或者一种活动,那时候我们该怎么安置我们存在的意义? 

前一个讨论
什么是真正的动物保护?
下一个讨论
做开发你遇到最无理的需求是什么?





© 2025-06-07 - tinynew.org. All Rights Reserved.
© 2025-06-07 - tinynew.org. 保留所有权利