百科问答小站 logo
百科问答小站 font logo



能否介绍一下强化学习(Reinforcement Learning),以及与监督学习的不同? 第1页

  

user avatar   Cybernetic1 网友的相关建议: 
      

我在外国博客上写过一些基於人工智能的文章,有些搬到了博客园,上面转录的是其中一篇:

什么是强化学习?

我正在研究的 AI architecture 是用强化学习控制 recurrent 神经网络,我相信这个设置可以做到逻辑推理和答问题的功能,基本上就是 strong AI。 但还有一些未解决的细节。 论文的标题是《游荡在思考的迷宫中》,即将发表。

補充: 還有一點,就是監督學習的問題可以很容易化為強化學習的問題(雖然這樣增加了複雜性而沒有益處),但反之則沒有一般的辦法。 見:Reinforcement Learning and its Relationship to Supervised Learning,Barto and Dietterich, 2004.

"But is it possible to do this the other way around: to convert a reinforcement learning task into a supervised learning task?

"In general, there is no way to do this. The key difficulty is that whereas in supervised learning, the goal is to reconstruct the unknown function f that assigns output values y to data points x, in reinforcement learning, the goal is to find the input x* that gives the maximum reward R(x*).

"Nonetheless, is there a way that we could apply ideas from supervised learning to perform reinforcement learning? Suppose, for example, that we are given a set of training examples of the form (xi, R(xi)), where the xi are points and the R(xi) are the corresponding observed rewards. In supervised learning, we would attempt to find a function h that approximates R well. If h were a perfect approximation of R, then we could find x* by applying standard optimization algorithms to h."




  

相关话题

  人工智能会是泡沫吗? 
  编程达到什么水平才能编写出像caffe这样的深度学习框架? 
  如何看待谷歌 Jeff Dean 用 AI 6 小时就能设计一款芯片,强力碾压集成电路设计专家? 
  如何评价周志华教授新提出的 Deep Forest 模型,它会取代当前火热的深度学习 DNN 吗? 
  从进化的角度看,实现强人工智能,究竟是数据重要还是模型重要? 
  如何看待亚马逊的无人超市产品 Amazon Go? 
  2017 年最令你震惊、悚然的数据是什么? 
  这种不考试,以娱乐为主的机器人教育对于中小学生及幼儿的意义何在? 
  如何评价 DeepMind 于2016年9月12日公开的 AlphaGo 自战棋谱及3月人机大战解说? 
  USC 大学教授、Pinscreen CEO Hao Li 是否存在论文造假、产品虚假宣传等问题? 

前一个讨论
什么是真正的动物保护?
下一个讨论
做开发你遇到最无理的需求是什么?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利