传统的方法,最大的好处是在于可解读性,原因过程结果都非常清楚,一切都是确定的。
即使有不确定的东西,我们也可以用某种方式建立模型,然后用相对确定的方式去推理验证,它的基础是非常稳固的。
相对来说,机器学习就容易陷入一种接近于玄学的范畴。在正统的计算机科学里面,其实是没有机器学习的,你看ACM里面就没有设置机器学习方面的Journal。当然,现在机器学习的效果实在太好,大家都要沾沾光,ACM也有这个方面的conference了,而且很多领域都涉及了不少机器学习的内容。
传统的方法,像符号主义,最大的问题还是在于它的计算复杂度太高了,而且模型本身也不容易建立。像现在联接主义的突破其实对于传统AI也是利好的,因为有些不好建模或者计算复杂度太高的部分可以用像NN这样的方式解决,最后综合出新的优秀方案。像DeepMind搞出的AlphaGo其实可以说就是这样一种东西。
可以做的新东西太多了,大家应该多多关注传统符号主义和联接主义的结合,引入语义进机器学习,或者引入机器学习作为传统AI的模块。说不定哪天我们就做出真正的强AI了 :)