百科问答小站 logo
百科问答小站 font logo



如何看待4.6上海通行证数量大增,导致浦东堵车麦德龙关闭的现象? 第3页

        

user avatar   orchimike 网友的相关建议: 
      国际上似乎并不承认夏朝的存在 却根据挖掘和荷马史诗确定克里特文化 是否是双重标准
user avatar   scarlett-liu-98 网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar   liu-shi-jie-98-76 网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar   Don0018 网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar    网友的相关建议: 
      

谢邀。这个问题很简单:如果知道各个号码的中奖概率一样,他们还会成为彩民吗?

***** ***** *****

上面这句话是调侃。如果要认真回答这个问题,得从两个方向回答:

  • (1)“1,2,3,4……” 这样的号码买的人真的少吗?

以双色球(红球 33 选 6,蓝球 16 选 1)为例,在 2015-11-17 的开奖中,全国投注量为 323,653,256 元,即 161,826,628 注,而不同的投注数 共有 17,721,088 种,所以平均每种组合大概有 9 个人投注。那么, 1,2,3,4,5,6,7 这样的组合是否有 9 个人投注呢? 还真的挺有可能呢。全国那么多人玩双色球,有 9 个人次投注了这个充满规律的号还真不奇怪。

所以,题主的命题看起来好像不太成立。

当然了,一定有很多人觉得觉得这个号绝无可能中奖,那么我们来看看近 300 期双色球的开奖情况:

根据计算,四等奖的中奖概率大约为 1 / 2303, 但在最近 300 期里,它中了 1 次四等奖,中奖率还高于平均值呢。

  • (2)为什么有些彩民会觉得 “1,2,3,4……” 这样的号码不容易中奖?

用我自己创造的词语来说:他们被 “归类假象” 蒙蔽了。

什么叫 “归类假象” 呢?

就是看似有意义的归类,在我们所关心的维度下没有意义,反而对我们的判断造成了干扰。

就概率而言,似乎可以用一种很有意义的方式将所有情形进行归类,而看上去不同类别的发生概率差别很大,然而实际上,这个差别只是由于它们在总数上的差异造成的。从任何一个类别中抽取相同个数的例子,其发生的概率或期望并无任何不同。

就本题的来说,我们不难理解彩民们的想法:

他们不自觉地把彩票中奖号码归类成了 “有规律组” 和 “无规律组”。

以双色球为例:“有规律组”的情形可能包括: 7个数呈等差数列,7个数都小于10,7个数都是偶数,7个数包含了两个等比数列等等……其他的都为 “无规律组"。

彩民们研究了一下以往的中奖号码,发现过去好像极少开出”有规律组“ 的情形,所以他们认为:

  • 【买无规律的号码组比买有规律的号码组中奖概率更大】

这个推论有道理吗?看起来好像很像回事呢。

但实际上,上面的那句话是不对的,正确的说法是:

  • 【中奖结果是无规律的号码组比有规律的号码组概率更大】

这两句话有什么不同呢?简单地说,后者是 有规律组 和 无规律组的 等比例抽样,而前者是 有规律组 和 无规律组的 1:1 抽样,样本大小就不一样,概率分布又怎么会一样呢。

举个例子,假设有 100000 个号码组合,其中有规律的有 1000 组,无规律的有 99000 组。

假如彩票中心抽奖了 100 次,每次中奖 1 个号码组合

  • 那平均来讲,只有 1 次是有规律组的, 99 次是无规律组的。无规律组的中奖结果占了 99%。

然而,对彩民来说,

中彩票的平均次数= 买彩票的次数 * 中奖号码属于这个分类的概率 * 买的彩票数在该分类中的比例

如果买了 100 次彩票,每次 1 注,

  • 如果 100 次都是买有规律组,那他的平均中奖次数 E1= 100* (1/100) * (1/1000)=0.001
  • 如果 100 次都是买无规律组,那他的平均中奖次数 E2= 100* (99/100) * (1/99000)=0.001

毫无差异

以上的推导非常简单,连小学生都很容易理解吧?

但是在生活中,这种看似简单的 “归类假象” 可骗了不少人哦。

举个例子,这是一个古老的故事:

曾经有一个女子学院,有一天校长提议道,为了活跃学院的气氛,建议招一部分男生。董事会的成员坚决反对:千万不能这样,否则的话,一年后会有一半的女生退学的!
在最终的妥协下,校长决定,当年招收 1% 的男生做试验。
一年后,校长宣布:“招收男生的计划取得了圆满成功。诚然,学院的女生数量确实有所减少,但一年后她们在该届全体学生中的比例仅仅下降了 1 %”。

你发现问题在哪里了吗?

#


user avatar   lion-70-84 网友的相关建议: 
      

生死状是民事行为

生命权,健康权是宪法保障,是公民最基本的权力。

宪法看到生死状,他就会一巴掌打在民法脸上,说你连你爹的话都不听啦???


民法通则就会哭着说,爹啊,你错怪我了,我


user avatar   ping-yuan-gong-zi 网友的相关建议: 
      

还是很多明星和导演喝彩的,很多明星转发了,还有发微博支持的。




只是现在中国的娱乐媒体学坏了,看热闹不嫌事大,好消息基本不报道。

专门盯着下半身、床上事儿、出轨、劈腿、走光、撕B等等来报道。

明星之间选矛盾来报道,没矛盾制造矛盾来报道,生怕打不起来不热闹。

这个习气特别不好。

但是,有什么样的受众才有什么样的媒体。

主要现在的受众也关注这些。

所以,主要问题在自己。

人民群众的素质亟待提高,比如我这种人。

现在尽量不关注明星隐私和八卦新闻。

多关注积极向上的,从我做起,从身边做起。


user avatar   zhao-yifan-62 网友的相关建议: 
      原题未说明“学习艺术”是作为一个爱好还是作为一种职业,答主们请注意区分这两种情况


        

相关话题

  为什么张文宏说上海指数级上升已被打断? 
  网传理想ONE增程器发生自燃导致车辆被烧毁,你怎么看? 
  如何看4月6日早上浦东堵车了? 
  在上海生活有什么鲜为人知的技巧? 
  女生第一台车买纯电动SUV合适吗? 
  越来越多的上海人不会说上海话了吗? 
  电影中用手枪或步枪打爆高速旋转的汽车轮胎可靠吗? 
  劳斯莱斯请网红晚晚做推广被吐槽,这对劳斯莱斯有什么影响?代言人「翻车」品牌应该受牵连吗? 
  把我连同我的车一起瞬间传送到月球1分钟我还能活下来吗? 
  上海本次无症状感染者连续几日破万甚至两万朝上,这个无症状感染者是怎么治疗的,会不会向确诊病例转变? 

前一个讨论
几个 G 大的 Windows 操作系统纯代码核心部分有多大?
下一个讨论
2022 年 4 月了,Windows 11 建议升级吗?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利