百科问答小站 logo
百科问答小站 font logo



机器学习能否用于综合评价?具体怎么操作? 第1页

  

user avatar   feng-kuang-shen-shi-92 网友的相关建议: 
      

肯定适合呀。

两者又没有那么明显的界限。

很多基本思想是一致的。

比如你讲到的topsis的基本思想改造,改造就可以运用到具体的领域里面来。

1、topsis的夹逼(过程)

上面有流程图。

一般讨论topsis的算法,或者整个过程,主要是讨论 D+ D-的两个距离公式

其实质就是带权值的距离公式。

从纵向的角度考虑就是一个夹逼的过程。

从多维(多列)到2列,再到一列(贴近度的两列是等价的)

里面归一化的部分,求权重的部分,机器学习中是必学的基本内容。

2、一个衣服合适度的问题求解

问题描述,一个女生,拍几张照片上传,然后选定了某款式的衣服,给出女生适合穿哪个型号。

求解过程如下:

上面是原始数据,S代表是小号的衣服。颈部是照片拟合出来的人的颈围,小号衣服最适合的长度。

两者之差称之为松度。这是立刻可以算出的。

上述归一化后的数据。

其中的权重可以由用户投票得出,也可以训练得出。

上面是一个专家经验得到的权重

上面是正负距离

上面是贴近度。

归一化矩阵来看,穿M 、L、XL都可以。

从距离公式上看,L,XL都差不多。都是属于最合适的。

从贴近度看,大号更合适。

这个例子是一个典型的机器学习问题。也是融入了传统的topsis的概念问题。

当然很多搞计算机的反而喜欢写拍照然后拟合这个部分。

即正面照,侧面照或者加一张背面照,然后拟合。




  

相关话题

  计算机视觉顶级会议论文中比较适合初学计算机视觉的人做的复现实验有哪些? 
  深度学习(机器学习)的下一步如何发展? 
  如何评价「Patches are all you need」? 
  做底层 AI 框架和做上层 AI 应用,哪个对自己的学术水平(或综合能力)促进更大? 
  如何看待 AlphaFold 在蛋白质结构预测领域的成功? 
  如何评价陈天奇团队新开源的TVM? 
  学习人工智能,术语看不懂怎么办? 
  为什么现在的CNN模型都是在GoogleNet、VGGNet或者AlexNet上调整的? 
  二分类问题,应该选择sigmoid还是softmax? 
  AI(或者说神经网络/深度学习)能够实现科学(尤其是物理学)研究中提出假设这一步嘛? 

前一个讨论
离职前的最后一天是怎么样一种体验?
下一个讨论
双飞燕是老品牌了,现在还流行吗?





© 2025-05-30 - tinynew.org. All Rights Reserved.
© 2025-05-30 - tinynew.org. 保留所有权利