百科问答小站 logo
百科问答小站 font logo



自监督学习(Self-supervised Learning)有什么比较新的思路? 第1页

  

user avatar   zhan-xiao-hang 网友的相关建议: 
      

更新一个我们在CVPR2019的自监督学习新工作Self-Supervised Learning via Conditional Motion Propagation。具体见之前发的一篇文章

------------ 2019的分割线 -------------
Mix-and-Match Tuning for Self-Supervised Semantic Segmentation.
这是一种为self-supervised learning服务的tuning的方法,主要为了缩小proxy task与target task的semantic gap. 目前可以在语义分割任务上不使用ImageNet pretraining,接近有ImageNet pretraining的performance。在其中一个setting中超越了ImageNet pretraining一点点。。。
后续可能会拓展到detection,并跟semi-supervised learning结合起来。
欢迎大家围观!




  

相关话题

  机器学习中的PR曲线一定会过(1,0)这个点吗? 
  全连接层的作用是什么? 
  据说机器学习长于预测,计量经济学长于解释。有什么具体例子是机器学习完成了很好的预测却在解释上表现不好? 
  简单解释一下sparse autoencoder, sparse coding和restricted boltzmann machine的关系? 
  为什么 larger batch size 对对比学习的影响比对监督学习的影响要大? 
  深度学习的多个loss如何平衡? 
  请问一下,机器学习领域的联邦学习技术,目前看到最多的是微众银行,国内还有哪些顶级专家及机构和大学? 
  Graph Attention Network的本质是什么? 
  请问有没有基于实例的迁移学习的数据? 
  深度学习有哪些好玩的案例? 

前一个讨论
请简单地表述结合律和交换律的区别和联系。结合律为什么那么普遍?
下一个讨论
如何评价刘强东「如果京东少缴五险一金,一年至少多赚50亿!」的言论?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利