百科问答小站 logo
百科问答小站 font logo



考完第十三届全国大学生数学竞赛后你有什么想说的吗? 第1页

  

user avatar   inversioner 网友的相关建议: 
      

我看没啥人说数学类,就说一下吧。题目可以看这边。我写几道我有兴趣的问题。

如何看待2021年全国大学生数学竞赛(数学A类)试题? - 知乎 (zhihu.com)

第二题:令 。条件可以化为

注意

我们得到

而且 。因为 是紧集,所以 在 取到最大值。设最大值点为 。

如果 ,则 。这样

得到 。

如果 ,则 ,显然成立。

第四题:令 , 为实矩阵。 对称意味着 也对称。因为 是酉矩阵,所以

所以 。

[引理]若 为可以对角化的矩阵,且 ,则 可以同时对角化。

用得很多的引理,这里不证明了。因为实对称矩阵可以对角化,所以存在可逆的实矩阵 使得对角化

且 。令 ,则 。实际上,

令 ,则

令 ,则 。所以 。

第六题:(1)如果对任意 都有 。

取 ,令 。则

得到 ,矛盾。

(2)反设 对某个 成立。根据(1),存在 使得 。根据微分中值定理,存在 使得

得到 。

我们证明,不存在这样的 ,使得在区间 内恒成立 。假设存在,设 表示所有这样的 的下确界。之前的结果说明 ;并且 。如果 ,根据 的连续性,存在 使得在 内都有 ,这与 的定义矛盾。所以 。现在用中值定理:存在 使得

得到 。这依然与 的定义矛盾。所以以上定义的数并不存在。

现在可以设 如下定义: ,且 。则 。根据连续性, ,矛盾。

(3)反设存在 使得对任何 有 。不妨设 。我们有

令 ,则 。所以

当 充分小时,右边小于零,得到 ,矛盾。

(4)与(2)同样做法。




  

相关话题

  如何看待西安交通大学学生自制小程序“西交小明”被关停(目前已恢复)? 
  小学生买票不能半价或享受优惠,为何大学生可以? 
  大学生,现有存款3万左右,该怎么分配? 
  2021 泰晤士亚洲大学排名公布,清华大学连续三年第一,中国高校排名创纪录,还有哪些信息值得关注? 
  一个将近四十岁的看起来特别正经正能量的老大爷,要认我这个女大学生做干女儿。我有那么幸运? 
  工科的就业模式是否与“钱多事少离家近”的理念相悖? 
  如何做一份优秀的简历? 
  大学生发现免费吃肯德基套餐「方法」分享给同学并从中牟利,获刑 2 年半,你怎么看? 
  为什么有部分农村的学生上大学就“堕落”了? 
  对于大学生来讲,笔记本电脑是否是大学中的必需品? 

前一个讨论
符号测度的Lebesgue分解与泛函里面的正交分解有什么关系么?
下一个讨论
如何证明树的树叶个数比度数不少于3的顶点数多?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利