百科问答小站 logo
百科问答小站 font logo



考完第十三届全国大学生数学竞赛后你有什么想说的吗? 第1页

  

user avatar   inversioner 网友的相关建议: 
      

我看没啥人说数学类,就说一下吧。题目可以看这边。我写几道我有兴趣的问题。

如何看待2021年全国大学生数学竞赛(数学A类)试题? - 知乎 (zhihu.com)

第二题:令 。条件可以化为

注意

我们得到

而且 。因为 是紧集,所以 在 取到最大值。设最大值点为 。

如果 ,则 。这样

得到 。

如果 ,则 ,显然成立。

第四题:令 , 为实矩阵。 对称意味着 也对称。因为 是酉矩阵,所以

所以 。

[引理]若 为可以对角化的矩阵,且 ,则 可以同时对角化。

用得很多的引理,这里不证明了。因为实对称矩阵可以对角化,所以存在可逆的实矩阵 使得对角化

且 。令 ,则 。实际上,

令 ,则

令 ,则 。所以 。

第六题:(1)如果对任意 都有 。

取 ,令 。则

得到 ,矛盾。

(2)反设 对某个 成立。根据(1),存在 使得 。根据微分中值定理,存在 使得

得到 。

我们证明,不存在这样的 ,使得在区间 内恒成立 。假设存在,设 表示所有这样的 的下确界。之前的结果说明 ;并且 。如果 ,根据 的连续性,存在 使得在 内都有 ,这与 的定义矛盾。所以 。现在用中值定理:存在 使得

得到 。这依然与 的定义矛盾。所以以上定义的数并不存在。

现在可以设 如下定义: ,且 。则 。根据连续性, ,矛盾。

(3)反设存在 使得对任何 有 。不妨设 。我们有

令 ,则 。所以

当 充分小时,右边小于零,得到 ,矛盾。

(4)与(2)同样做法。




  

相关话题

  有哪些典型的「学生思维」? 
  如何看待安徽省考研改革? 
  在大学生才艺疯狂“内卷”的时代,喜欢音乐的大学生如何“躺赢”? 
  怎样看待大学里的学长学姐在路上推销笔这一行为? 
  高三生只对数学感兴趣,其他科都不喜欢,未来该怎么做? 
  没参加高考怎么上大学? 
  轻松筹的被捐款人真的那么穷吗? 
  人大、武大毕业卷香烟,流水线上研究生超 30% ,如何看待这种现象? 
  大学身边有些朋友都去做新媒体运营了,经常吐槽很累,还经常加班,但为什么还要去做新媒体呢? 
  如何合理利用大学“水课”? 

前一个讨论
符号测度的Lebesgue分解与泛函里面的正交分解有什么关系么?
下一个讨论
如何证明树的树叶个数比度数不少于3的顶点数多?





© 2025-06-27 - tinynew.org. All Rights Reserved.
© 2025-06-27 - tinynew.org. 保留所有权利