之前大部分的语义分割都是用pixel classification,这篇工作的创新之处是看成了一个instance mask prediction,思路挺新奇的。
一点额外想说的是,语义分割本身是没有instance区分的,标注也没有区分instance,那么如果看成instance mask预测的话,就只能简单地根据类别生成K个不同的mask,即各个类别的mask,这里也不区分类内的instance。这个instance mask prediction中的instance就是相对同一类的了,预测的mask也是固定为K,此时N queries其实也可以简化为K queries。
如果再往前的话,K queries可以固定为每个类别的queries,那么训练的loss就可以变成简单的K个sigmoid loss,即区分图像中是不是含有这个类别。每个类别的query和全局特征结合得到该类别的mask prediction。和论文里面说的fixed match基本类似。
而论文提出的方案更通用化,毕竟可以用于全景分割上。