百科问答小站 logo
百科问答小站 font logo



2021 年了,机器/深度学习还有哪些坑比较好挖? 第1页

  

user avatar   qiong-yu-zhen 网友的相关建议: 
      

提供一个思路:因果推断。

传统的几个深度学习方向(CV/NLP)红利差不多被挖尽了,而推荐得益于各种业界不尽相同的场景尚有挣扎的空间。那最近比较适合刷文的领域,我觉得因果推荐算一个方向,略微小众,却已经引起很多人的兴趣了,而且严格算起来,算是一个小交叉,毕竟很多概念来自计量经济学。因果推断主要解决两个问题,一是因果关系,二是因果关系的影响。跟传统的机器/深度学习解决相关关系不同,因果推断专注于理解变量之间的因果关系。

本人整理的一个论文list,主要聚焦于因果推断里的Uplift。(文末还有一些实用的学习链接):

Yger, F., Atif, J., & Sugiyama, M. (n.d.). Uplift Modeling from Separate Labels.

Han, M. (n.d.). Uplift-based User Sensitivity Prediction for Coupon Allocation Optimization in E-commerce.

Studies, S. (n.d.). Supporting Information : Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning, 1–26. doi.org/10.1073/pnas.18

Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica, 71(4), 1161–1189. doi.org/10.1111/1468-02

Rzepakowski, P. (2010). Decision trees for uplift modeling Rzepakowski Marketing campaign example.

Rzepakowski, P. (2010). Decision trees for uplift modeling. 2010 IEEE International Conference on Data Mining, 441–450. doi.org/10.1109/ICDM.20

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics BART, 20(1), 217–240. Bayesian Nonparametric Modeling for Causal Inference

Rzepakowski, P., & Jaroszewicz, S. (2012). Uplift modeling in direct marketing. Journal of Telecommunications and Information Technology, 2012(2), 43–50.

Caro, F., & Gallien, J. (2012). Clearance pricing optimization for a fast-fashion retailer. Operations Research, 60(6), 1404–1422. doi.org/10.1287/opre.11

Rzepakowski, P., & Jaroszewicz, S. (2012). Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems, 32(2), 303–327. doi.org/10.1007/s10115-

Deng, A., Xu, Y., Kohavi, R., & Walker, T. (2013). Improving the sensitivity of online controlled experiments by utilizing pre-experiment data. WSDM 2013 - Proceedings of the 6th ACM International Conference on Web Search and Data Mining, 123–132. Improving the sensitivity of online controlled experiments by utilizing pre-experiment data

Rzepakowski, P., Jaroszewicz, S., Zhao, Z., Harinen, T., Zhao, Y., Fang, X., … Misra, S. (2015). Recursive partitioning for heterogeneous causal effects. Proceedings of the 17th SIAM International Conference on Data Mining, SDM 2017, 34(27), 1531–1559. doi.org/10.1073/pnas.15

Sołtys, M., Jaroszewicz, S., & Rzepakowski, P. (2015). Ensemble methods for uplift modeling. Data Mining and Knowledge Discovery, 29(6), 1531–1559. doi.org/10.1007/s10618-

Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine, 34(28), 3661–3679. doi.org/10.1002/sim.660

Gutierrez, P., & Gérardy, J.-Y. (2016). Causal Inference and Uplift Modeling A review of the literature. JMLR, 67, 1–13.

Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7353–7360. Recursive partitioning for heterogeneous causal effects

Zhao, Y., Fang, X., & Simchi-Levi, D. (2017). Uplift modeling with multiple treatments and general response types. Proceedings of the 17th SIAM International Conference on Data Mining, SDM 2017, 588–596. Proceedings of the 2017 SIAM International Conference on Data Mining (SDM)

Li, C., Yan, X., Deng, X., Qi, Y., Chu, W., Song, L., … Xiong, J. (2018). Reinforcement Learning for Uplift Modeling, 1–22. Retrieved from Reinforcement Learning for Uplift Modeling

Diemert, E., Betlei, A., Renaudin, C., & Amini, M.-R. (2018). A Large Scale Benchmark for Uplift Modeling. Proceedings OfAdKDD & TargetAd (ADKDD’18). ACM, 8, 603–621. doi.org/10.1145/nnnnnnn

Hitsch, Gg. J., & Misra, S. (2018). Heterogeneous Treatment Effects and Optimal Targeting Policy Evaluation. SSRN Electronic Journal, 1–64. doi.org/10.2139/ssrn.31

Yamane, I., Yger, F., Atif, J., & Sugiyama, M. (2018). Uplift modeling from separate labels. In Advances in Neural Information Processing Systems (Vol. 2018-Decem, pp. 9927–9937). doi.org/10.1111/0034-65

Zhao, K., Hua, J., Yan, L., Zhang, Q., Xu, H., & Yang, C. (2019). A unified framework for marketing budget allocation. In KDD (pp. 1820–1830). doi.org/10.1145/3292500

Zhao, Z., & Harinen, T. (2019). Uplift Modeling for Multiple Treatments with Cost Optimization. Uber DSAA CCF C. Retrieved from Uplift Modeling for Multiple Treatments with Cost Optimization

Sato, M., Sonoda, T., Singh, J., Zhang, Q., Takemori, S., & Ohkuma, T. (2019). Uplif-based evaluation and optimization of recommenders. RecSys 2019, 296–304. doi.org/10.1145/3298689

Nie, X., & Wager, S. (2019). Quasi-Oracle Estimation of Heterogeneous Treatment Effects. R-Learner, (2017), 1–46.

K, R. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. PNAS Refen_count_uptodate=64. doi.org/10.1073/pnas.18

Dasgupta, I., Wang, J., Chiappa, S., Mitrovic, J., Ortega, P., Raposo, D., … Kurth-Nelson, Z. (2019). Causal Reasoning from Meta-reinforcement Learning. Retrieved from arxiv.org/abs/1901.0816

Zhu, S., Ng, I., & Chen, Z. (2020). Causal Discovery with Reinforcement Learning. ICLR Huawei Noah’s Ark Lab, 1–17. Retrieved from arxiv.org/abs/1906.0447

光喻老哥有一篇很不错的入门文:

知乎的ruocheng老哥也整理了一个很棒的gitlab链接,包含一些论文和实现代码的地址:


user avatar   breaknever 网友的相关建议: 
      

我努力工作,年收入突破百万。我楼下小卖部老板眼红了。

他说他每天7点开店,晚上10点关店,工作时间比我长,收入却比我低,这不公平。为此,他甚至发展出了一套小卖部老板人权理论,要求将卖给我的可乐从一瓶2块钱涨到100块钱。

他说之前他受太多委屈了,等他觉得委屈弥补回来了,他会把价钱降到一瓶4块钱的。但想像原来一样2块钱一瓶那是永远不可能的。

我默默想了一下,走多一百米,用2块钱在另一家店买了一瓶可乐。

这件事被小卖部老板知道了,他生气了,他跑去骂另一家小卖部老板,骂他不尊重小卖部老板人权理论,并且在我家楼下贴大字报隐晦地骂我。

你说我为啥讨厌他?

我不只讨厌他,我甚至想报警呢。可惜警察说这事他们管不了。

……

这件事还有后续。

后来,小卖部老板人权组织找到了我,跟我说我楼下的小卖部老板的小卖部老板人权理论不是正宗的,他们才是正宗的。

我说,那你们的是怎么样的?

他们说,我们卖3块。




  

相关话题

  测试集在构造的时候需要人为控制其中应该正确的和应该错误的数据比例吗? 
  如何评价微软亚洲研究院提出的LightRNN? 
  研一,在学机器学习和深度学习,为什么感觉越学越不会,怎么解决这个问题? 
  NIPS 2018 有什么值得关注的亮点? 
  目标检测算法中Two-stage算法速度慢,到底在哪里? 
  如何理解矩阵对矩阵求导? 
  机器学习小白来提问:关于联邦学习FedAVG和FedSGD的问题? 
  有哪些比较好的元学习(meta learning)领域的学习资源? 
  Yann LeCun、Geoffrey Hinton或Yoshua Bengio能得图灵奖吗? 
  深度学习中有哪些数据增强方法? 

前一个讨论
为什么 macOS 在 /usr/bin/ 下会有 python3?
下一个讨论
如何在不传播信息 A 的条件下传播「不传播信息 A」这个信息?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利