近期,比亚迪股价连创新高,荣登中国车企市值第一[1]的宝座。
投资者对比亚迪股价的看法,与它的“新能源汽车领导者”的定位息息相关。
然而,刚刚过去的广州车展上,当比亚迪发布重磅技术DM-i超级混动时,它没有详细解析混动构型,也没介绍电池、电机等新能源关键零部件,反而重点介绍了一款看似和新能源毫无关系的发动机!
图片来源[2]
插混技术发布会上,发布了一款发动机?比亚迪拿错剧本了吗?身在曹营心在汉吗?在持续盈利的燃油车与面向未来的新能源之间又左右摇摆了吗?
一开始,我也很好奇,于是细细研究了一下DM-i超级混动技术,确实很有内涵、很有意思:
骁云1.5L虽然是一款发动机,但它却是一款为电动化而生的发动机,是一款剑指燃油车老巢的发动机,也是DM-i超级混动技术的核心零部件!
这款发动机最夺人眼球的是它高达43%的热效率。
为什么专注于在新能源核心技术耕耘的比亚迪,能够石破天惊地放出一个发动机大招?除了比亚迪自身持续不懈的投入外,更重要的是这款发动机的设计,处处体现了“伤其十指、不如断其一指”的思路 —— 放弃燃油平台,只为插混专用!
1. 阿特金森循环支撑下的超高压缩比
我们都知道,提高压缩比是提高发动机效率的不二法门。然而,汽油机提高压缩比是有限度的,过高的压缩比会带来爆震等问题,因此当前行业主流压缩比在9-12左右。
那为什么这款骁云1.5L自吸发动机的压缩比,可以达到15.5的惊人数字呢?这主要归功于,比亚迪充分利用了阿特金森(Atkinson)循环。
什么叫阿特金森循环呢?说起这个,必须要提起常规的奥拓(Otto)循环:膨胀行程与压缩行程相等。
奥拓循环带来的一个问题就是:作功行程结束时,气缸内部的“废气”并非“强弩之末”,而是温度较高、压力较大,“廉颇老矣,还能作功”。
无奈的是,活塞已经到了下止点,不给它作功的机会了 ——除非能够想到一个办法,可以使膨胀比大于压缩比,也就是实现传说中的over-expansion cycle[3].
如下图[4], 通过增大膨胀比(同时还降低了压缩比),使发动机工作循环从虚线变成了实现,而两块绿色区域就是多出的对外输出功,净赚!—— 这就是所谓的阿特金森(Atkinson)循环。
早在1882年,一位名叫阿特金森(James Atkinson)的英国工程师提出了以多连杆机构来实现阿特金森循环的方法,并申请了专利:
图片来源[5]
但这种机构也太复杂了,可靠性不行! 于是,比亚迪通过进气侧VVT的可变正时机构,通过压缩行程的进气门晚关,同样实现了膨胀行程>压缩行程的over-expansion cycle,从而提高了效率[6]。
讲到这里你可能会问:既然比亚迪可以通过阿特金森循环来提高压缩比,那么其它厂家也可以啊!为什么这款骁云1.5L自吸发动机的压缩比达到15.5的惊人数字呢?
妙就妙在“插混专用”这四个字:阿特金森循环虽然高效率,但并非高性能 —— 传统发动机必须兼顾奥拓循环以实现高性能,而过高压缩比下的奥拓循环很容易爆震;而这款骁云1.5L自吸发动机放弃奥拓循环,专攻阿特金森循环,才实现15.5的惊人压缩比。
那仅有阿特金森循环的发动机,会不会太“肉”了呢?这点也不用担心,因为这款发动机是“插混专用”,插混车上的电池、电机可以配合它实现高性能 —— 比亚迪的电驱动技术实力,应该无须多言了吧?
就像很多名人偏科也能进名校一样,不懂“奥拓循环”的骁云1.5L自吸发动机荣登热效率43%宝座,成为插混专用发动机的优等生,这毫不奇怪!
2. 取消轮系,全面“减负”
传统发动机不仅要驱动车轮,还是一个“全能奶妈”:通过前端轮系来驱动发电机、空调压缩机、机械真空泵、机械水泵等一大家子附件。在附件逐步电气化的过程中,大部分传统发动机也不敢彻底取消:我咋保证发动机应用的每一款车上都不需要前端轮系呢?
而骁云1.5L自吸发动机则表现了壮士断腕的决心:直接、彻底、全部取消前端轮系 —— 你们这些附件怎么才能运转起来,老子不管了!
为什么会有这种决心?答案也很简单,还是在“插混专用”四个字上 —— 插混车上必然有电池、电机,顺便就把这些活给干了,无须劳烦发动机!
如此一来,全面减负的发动机实现高效率,也就不奇怪了!
此次发布会上虽然未详细解析DM-i的混动构型,但我们可以推测出它具备两个重要特点:
也就是说,DM-i混动构型可能与DM 1代相似:十年之间,比亚迪核心零部件发动机、电机、电池全面进步,就可以让这种大道至简的串并联系统构型发挥更大优势了!
图片来源[7]
这让人想起二三十年前的经典游戏《金庸群侠传》里的“野球拳”:主角预设武功,仅主角会用,但很难练;1-9级是既不中看也不中用,但第10级却是“天下无难事,只怕野球拳了[8]!
有人可能说:看了半天,DM-i不就是比增程式混动多了一个离合器、多了一个高速发动机直驱的功能吗,似乎也没多大区别?
事实上,相比较于简单的增程式混动,厚积薄发的DM-i系统的开发难度大很多,性能上也有本质的提升,可以从以下三个角度来理解:
图片来源[10]
检验动力系统水平高低的最终依据,还是要看它在实车上的表现。搭载DM-i超级混动系统的第一辆车为秦Plus.
秦Plus在插混B状态(不耗电状态)下的百公里油耗达到了惊人的3.8L。要注意,3.8L并不是插混车型的综合油耗 =(25*无电时油耗 + 纯电里程*纯电油耗)/(25+纯电里程),而是B状态的无电时油耗,是与油电混动车型硬碰硬的一个指标[11]。
作为插混车型,秦Plus在油耗上已经可以和经典油电混动丰田THS或本田i-MMD较一高下,首要功臣就是DM-i超级混动架构与骁云1.5L插混专用自吸发动机。
个人认为,比亚迪对于汽车电动化历史进程中的发动机技术路线的理解是完全正确的:汽车电动化并不一定是要革发动机的命,而应该在电动化的新平台上为发动机“全面减负”,将其打造成“偏科的优等生”,从而实现更高的系统效率。
我们常说发展新能源是某种意义上的变道超车,超车的不仅仅是电池电机,也包括汽车电动化新平台上的发动机啊!
作为新能源汽车的巨头,比亚迪推出了一款插混专用的骁云1.5L自吸发动机,目标却是实现更好的新能源动力技术,剑指传统燃油车。
在发动机技术路线上,我认为比亚迪是做了一个很好的示范。