作为一个把御氘术这个技能点到了九级的人,我看到这个问题的第一反应是这样的:
上图是DC电影《守望者》里的曼哈顿博士,其眉心的Logo就是氢原子的波尔模型。
曼哈顿博士原本是一位核物理科学家,在一次实验中意外身故,但不久之后重生并拥有了许多超能力,其中一个便是控制粒子,这当然包括氢元素。
那么,作为一个聚变领域的研究人员,假如真有一天我能控制氢元素,我肯定是先手搓个核聚变堆出来玩。
不好意思放错图了,应该是这个(没耐心可以从1:05开始看):
其实这个视频里有个bug:视频中的杯子多半是不能用来当核聚变燃料的(不知道这是不是被删减的原因)。
在所有核素中,铁(Fe)的平均能量是最低的。因此 ,铁核素聚变(生成更重的核素)是需要吸收能量的,拿来当燃料烧显然是要亏掉底裤的。
实际上,绝大部分金属都不适合当聚变燃料,比较有点希望的也就是锂(Li)。但这货作为碱金属的一员十分活泼,拿锂来做水杯的话,估计会变成这样:
话归主题,从上面的结合能图可以看出,氢( )具有最高的平均核子能量,无疑是最吸引人的聚变燃料。这也是我们头顶上那颗太阳的主要“燃烧”方式:
但需要注意的是,氢-氢之间的聚变十分缓慢。即使在太阳核心的高温高压环境下,一颗氢核也需要经历数十亿年才能聚变成氦核。虽然这使得我们头顶的太阳能够长期稳定的发光发热,但这对我们实现高效率的可控核聚变显然是不利的。
目前的学术界中,研究的最多的聚变反应是氢的同位素,氘()-氚()之间的反应,这也是最容易实现的一个反应:
但这个反应也有一个弊端:氚太少。
海水里的氘基本上是取之不尽的,但氚的半衰期只有十几年,地球上基本上不存在天然氚。因此,目前设计的聚变堆当中,需要设计复杂的氚增殖回路,使氚处于一个循环利用的状态。
不过在更远的未来,我们或许可以直接用纯氘进行反应,它的两个主要反应路径如下:
当然,这个反应的截面比氘氚反应小许多,换句话说,实现反应所需的温度/压强/时间要高很多,对御氘术的要求自然也更高,有生之年估计是难以看到了。
不过,人总是要有梦想的嘛