百科问答小站 logo
百科问答小站 font logo



经济学(劳动、卫生等应用微观计量领域)为什么没能广泛应用人工神经网络算法等机器学习的算法? 第1页

  

user avatar   divinites 网友的相关建议: 
      

克拉克奖获得者苏珊.阿瑟说过一句话就可以概括了:神经网络的预测能力强,但是解释力差,而传统计量的解释力强,预测力弱。工程重预测,经济学重解释。

题主说一定要有模型,这个倒未必,很多计量也可以是探索性的,自变量因变量设定一下,先跑一个线性回归看看显著性,很多研究都这么开始的。但是计量的好处在于,回归结果出来之后,不管解释了因变量变化的百分之几,但是估计值就在哪里放着,哪个变量显著,哪个变量不显著,哪个变量更重要,可谓是一目了然。然后我们就可以或者用现有理论来解释回归结果,或者提出新的解释。


但是神经网络高度非线性,往往就是把参数输入进去,然后输出一个预测结果,一般来说,我们比较的是预测的精度,预测越准,我们认为这个算法越好。但是经济学家需要回答的是为什么。因为高度的非线性,各种参数之间在神经网络内部互相纠缠,我们只知道最后的结果是好的,但是无法把这个预测掰开了,揉碎了告诉大家,分别来自于哪个参数的作用。


在工程上,往往需要的是结果,所以预测准就够了,就能够用来开发诸如在线推荐系统等等基于机器学习的应用了,但是经济学需要的解释经济现象背后的原理,为什么这么准呢?目前还是需要用经典的计量来解释更有效。


苏珊.阿瑟本人有计算机本科学历的背景,对机器学习的各种比较工程的方法不排斥,并且在联通机器学习和计量经济学方面做了很多的工作。有兴趣去她的主页看看:Susan Athey

比如这篇文章 Machine Learning for Estimating Heretogeneous Casual Effects 就很有意思。




  

相关话题

  知乎上的经济学 PhD 们都有着什么样的申请经历? 
  可以用钱买到喜欢的人吗? 
  什么叫需求弹性? 
  没有围墙的大学是如何管理外来人员的? 
  美国智库发布新闻:印度已超过英法 成为世界第五大经济体。怎么看待这一新闻? 
  如何理解「逆向选择」中的「逆向」二字? 
  为什么货币会贬值? 
  政府应该救市吗?历史上美国股票市场是如何救市的? 
  有一个盒子,把钱放进去有一半的概率变成双倍,也有一半的概率钱会消失,你会放钱进去吗? 
  在你读过的论文中,最离谱的错误有哪些? 

前一个讨论
如何评价经济学家鲍莫尔 (William Jack Baumol) 的学术成就?
下一个讨论
王进和林冲的八十万禁军教头的官职是多大的官?





© 2025-03-25 - tinynew.org. All Rights Reserved.
© 2025-03-25 - tinynew.org. 保留所有权利