百科问答小站 logo
百科问答小站 font logo



数据分析师的具体工作职责和工作内容有哪些? 第1页

  

user avatar   xin_zou 网友的相关建议: 
      

以下回答主要针对中型互联网公司,偏产品数据分析的职责和工作,希望能抛砖引玉。


【1】找到搭建数据指标体系衡量产品(measure)

费曼说过一句话,如果我们不能创造某样东西,那么说明我们还没有搞清楚(What I cannot create, I do not understand)。

对于数据分析师来说,如果我们不能用数据衡量某个产品,那么说明我们还没有搞清楚。

这个问题看似简单,其实很麻烦。


对于不同的产品,可能会有不同的衡量方法,同时也可能会有好几个,各有什么优劣?

比如说 Uber 在初期,有多少司机(供给方)可能是一个很重要的指标,而发展一段时间之后可能是交易量。

再比如,同样是共享经济,Uber 看用户的 app 使用时长,可能是个意义不大的行为;而对 Airbnb 来说,用户的 app 使用时长可能是一个很重要的指标。

思考题:为什么?


对于同一产品,针对不同的场景需要要的指标可能又是不一样的。

再以 Uber 为例,假设司机的月活数量是一个很重要的指标,可以看公司长期的发展。

但是这个指标却并可能并不能作为日常做 A/B 测试的指标,想想这又是为什么?


【2】找到可以驱动产品的指标

当知乎说自己发展的好、拉风投的时候会说有多少日活(好像是七千万?)。

对于投资人、创始人来说,都是一个很好的衡量产品发展的数据。

但是如果想要把产品进一步提高,日活这个数据就并没有什么用了,因为这是结果,不是手段。

数据分析师的工作,就是要找到这么一个或几个指标,是跟公司的长期目标发展相关的,同时又能通过驱动这些指标达到长期发展的目的。

比如 LinkedIn 可能是希望用户建立 X 个好友,Twitter 可能是希望用户关注 Y 个帐号,Quora/知乎可能是希望用户关注 Z 个话题,或者答了 N 个题,如此各种。


【3】跟产品经理、工程师等合作寻找改进产品的机会

现在产品的目标有了,驱动产品的方向也有了,那么具体怎么驱动呢?

比如说希望用户关注 Z 个话题,那么在用户注册的时候就给推荐呢?还是默认关注一些话题?

默认关注一些话题会有什么好处?又会有什么坏处?

是在用户刚注册就让他们关注好,还是使用了一段时间之后再关注好?

如果有一些用户一个话题都没有关注,怎么办?

等等。


【4】帮助产品做决策

做决策,可能很多人第一反应想到的是做 A/B 测试,这的确是一方面,而且也是很重要的一方面。

但有时候容易忽略的是如何帮助产品/工程师设立优先级。

在互联网行业,任何时候都有几十上百甚至上千个事情需要做的,比如说八阿哥多多的网页版和被吐槽多多的编辑器。

那么哪个是最重要的、最需要解决的?

哪些改变是有可能带来产品的改进的?

同时有十个新的产品特性可以加的,应该先做哪个?甚至哪些是没有必要做的?

毕竟工程师这么贵,招人也不容易,所以很多时候需要做一些聪明的选择,比如救助于数据分析。


回到 A/B 测试,数据可以做的就更多了。

比较直接的,如果写 pipeline 抓取数据,做假设检验这些,更重要的,回到了第一点和第二点,做 A/B 测试不会只有一个指标,通常会有好几个。

如果有些升了有些聊了,怎么权衡?

比如说 Airbnb 订单量增加了,但是用户减少了,这是个好的方向吗?

或者说 Uber 司机收入增加了,但是评价降低了,高峰期添价(Surging Pricing)出现得更频繁了,应该选哪个?

A/B 测试本身技术方面不是最难的,难的是如何根据数据做决策。


【5】产品数据追踪

如果 Amazon 的网站挂了,对 Amazon 的收入会有很大的影响。

如果 Amazon 云挂了,那不只对收入有影响,还会影响大批客户。

所以需要有工程师二十四小时值班(oncall)。

类似的,如果发现知乎日活异常增加,或者降低,怎么找出原因?怎么解决?

这些也都属于数据分析师工作的一部分。

要对产品做数据追踪,就离不开不同维度的数据,把它们做成报表,所以需要数据分析师,有时候也可能是 data engineer 的工作。


【6】寻找新的领域

在产品的不同发展时期,侧重点可能是很不一样的。

比如在产品发展的初期,可能是社区运营,找到好的种子用户,打造一个良好的社区。

在产品发展的初期,可能是增加普通用户的数量,扩大用户基数。

如何确定产品在哪个时期?在不同的时期又如何找出可以推进产品的方法?

这些方法可能是从产品、用户体验的角度出发,比如说如果加个「想法」会怎么样?

也有可能是从工程师的角度出发,比如说页面载入时间过长等等。

也有可能是从数据的角度出发,比如说发现很大一批用户喜欢发长篇评论,但是却并不点赞,那么试试开发一个功能评论的同时也分享到时间线?


【7】给团队设定目标

前面提到数据可以帮助团队决定做哪些方向,那么这些方向可以达到一个什么样的目标?

如果目标定得太高,最后团队没有完成,一次两次还好,如果总是这样,那么必然会打击团队士气。

如果目标定得太低,团队总是轻松完成,那么就起不到激励团队的作用了。

注意这里的设定目标并不是做了什么事情,投入了多少时间,而是最后对产品的指标有什么影响。

比如说 Uber 的交易量增加了多少,或者是知乎的日活增加了多少如此种种。


【8】长期投入

大部分时候的数据分析是基于当前的状态的,但是也需要考虑到用户、产品、环境等的变化。

所以很多时候也需要看以前的数据。

如果以前的数据没有了,那就就再也找不回来了。

种一棵树最好的时间点是十年前,第二好的就是现在了。

所以把目标放长远点,三年之后五年之后十年之后,我们需要什么样的数据,现在就可以准备好的。

如果三五十年之后自己还在公司的话,那么一定会庆幸自己现在做好的铺垫工作。

如果已经离开公司,那么一定会有个人默默的谢谢你的。


【9】带新人,和面试组建团队的能力

如果公司处于一个高速发展状态,那么这两项职责的重要性不言而喻。

如何让新人快速有效的入手,如何高效率高精度的识别优质候选人,一方面可以让自己的影响力快速增长,另一方面也是公司增长的保障。

如果公司处于一个相对平台的状态,那么多少也还是会有新老交替,带新人和面试的能力也是必不可少的。


【10】提供数据支持

团队里合作方有时候会需要数据分析师提供帮助,比如说在解决 oncall 的问题的时候,工程师可能会需要数据分析师找一些 pattern;

比如用户调研采集完数据之后,需要数据分析师做一些处理;

这些也都是日常工作的一部分。


另外我的一些数据分析相关的回答供参考:

邹昕:如何快速成为数据分析师?

邹昕:数据分析中会常犯哪些错误,如何解决?

邹昕:数据科学家 (Data Scientist) 的核心技能是什么?

邹昕:一个有三年工作经验的优秀数据分析师所具备的能力有哪些?怎么衡量?从哪几个方面?

邹昕:数据分析会骗人么?

觉得有用就点个赞呗,别收藏了(收藏了也不会看的)。




  

相关话题

  熵权法确定权重的原理是不是因为它仅依赖于数据本身的离散性? 
  男士洗面奶和女士洗面奶的区别在哪? 
  去哪找数据?怎么挖掘? 
  大家帮我分析下吧,我该怎么做? 
  Python中除了matplotlib外还有哪些数据可视化的库? 
  做数据分析的女孩子,职业发展前景在哪里?数据分析枯燥吗? 
  做数据分析的女孩子,职业发展前景在哪里?数据分析枯燥吗? 
  如何成为一名优秀的商业分析师? 
  毕业论文怎样找到质量好的数据来源? 
  成长型企业如何灵活、高效、全方位地实现数字化转型? 

前一个讨论
如何看待民警绊摔抱娃女子孩子着地后痛哭涉事民警被停职?
下一个讨论
有哪个瞬间让你突然觉得「我的生物白学了」?





© 2025-01-19 - tinynew.org. All Rights Reserved.
© 2025-01-19 - tinynew.org. 保留所有权利