百科问答小站 logo
百科问答小站 font logo



计算流体力学(CFD)里应用注意力机制(attention)是否可行? 第1页

  

user avatar   li-xin-yu-20-30 网友的相关建议: 
      

个人感觉,CFD主流还是倾向于用基本的确定物理规律(三大方程+状态方程等),辅助以少量的经验模型(DNS甚至不使用经验模型)来预测物理现象,对黑箱的接受度还不高。

2022年更新,之前是我孤陋寡闻了,在此表示歉意。PINN这一类已经不算是“黑箱”了,他的本质就是凑出拟合函数来优化全局误差,和有限元凑出插值函数的思路差不多。能接受有限元,就会慢慢接受PINN。

如果将来能够提高精度,深度学习完全有希望胜任CFD模拟,且它的重算,微扰计算和反问题求解相当快,搞三维超实时仿真也没问题。


user avatar   jin-xue-feng 网友的相关建议: 
      

对CFD不熟,可以参考一下电磁仿真(麦克斯韦方程)和分子动力(牛顿力学),现在在这些领域有一些进展了,一般的范式是通过经典的方程生成小数据,基于这个小数据进行神经网络训练实现小尺度到大尺度的扩展,性能上可以实现数量级的提升;当然神经网络不一定是attention机制,同时CFD,尤其是湍流,难度比其他领域更大,更复杂,不确定这个方法是否好使,不过万一有效,那也是一篇nature啊。

MindSpore在电磁仿真和分子动力学上做了一些探索,供参考:




  

相关话题

  如何看待 TI7 上与 Dendi solo 的 OpenAI? 
  如何看待Transformer在CV上的应用前景,未来有可能替代CNN吗? 
  为什么VAE-GAN的训练很容易发生梯度爆炸,如何避免? 
  把花式咖啡搅乱后,倒着做一遍搅乱的动作,有可能把咖啡的图案复原吗?就像GIF图里的一样? 
  有没有根据一张人物的立绘正面像,自动生成同风格各侧面角度像并自动衍生表情的软件啊? 
  在文本分类任务中,有哪些论文中很少提及却对性能有重要影响的tricks? 
  目前有哪些比较成功的人工智能应用? 
  Resnet到底在解决一个什么问题呢? 
  老师给了一个神经网络的程序,他之前是跑通了的,但是我迭代几十次或者一百多次就报错。这个怎么解决? 
  如何看待周志华等人的新书《机器学习理论导引》? 

前一个讨论
CTC和Encoder-Decoder有什么关系?
下一个讨论
你是因为什么而喜欢上编程的?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利