我过去几年一直在新加坡做风控,接触欧美的客户比较多,我会根据我了解的国外风控的情况,以及结合我对国内风控行业以及相关技术的了解,来谈谈自己看法。
我们都知道,在欧美国家金融行业发展得比较早,很多产业和技术都比较成熟了,例如风控方面,国外普遍采用美国征信巨头FICO的评分卡。毕竟FICO是业内第一个信用评分的发明者,积累的客户还是非常多的。
但在信息爆炸的时代,依赖过去的成熟技术未必能够保持低风险。据我了解,很多银行已经开始寻求基于AI的方案。我所在的公司有做AI风控方案,也得到了一些国际金融机构青睐,当我在为这些国际金融机构服务时,我常常会想,国内AI风控发展得如何了?我在用的技术会不会落伍了?于是我参加了国内一些智能风控的技术分享和公开论坛,我总体感觉是,国内的AI风控发展得非常好,在国际上已经属于领先水平。
估计看到这里的你可能有疑问,你说了这么久,到底什么是AI风控?和以前没AI时的风控有啥不一样?听我细细道来。
传统金融风控以“风控评分卡模型自动审核为主,以人工审核为辅”。评分卡长啥样子,又是怎么发挥作用的?这里给一个FICO的评分卡例子。
例如一个申请人有三个计分属性,例如年龄,住宅是否自有,以及收入,不同的属性值对应不同分数。从这个评分卡我们可以看到,某个客户需要申请信用额度,这个人年龄35岁,住宅是自有的,收入为$38k,那么可以算出得分为660,超过银行最低的要求,于是银行就给他授信。如果想知道这种评分卡是如何生成的,可以参考我之前写的一个技术文章,这里就不再详述了。
但是,随着需要金融服务的人群不断增加,对风控工作的准确率提出了更高的要求。这时候静态评分卡的弱点就暴露了:
因此越来越多的金融机构开始把目光投向AI风控技术。相比起传统风控,AI风控采用机器学习甚至深度学习算法。下图为我画的简单的AI风控系统运作的原理示意图,可以能看到,AI风控系统比起传统风控,能自动从最新的数据里面学习到最新的用户行为模式,从而更能灵活地动态预测客户风险,做好客户全周期的风险管理,并且能高度自动化,减少人工干预。
首先先明确AI技术和AI风控技术的区别,AI技术是指整体人工智能技术,AI风控则是人工智能技术风控领域的应用技术。在AI技术和AI风控技术方面,国内外也是有点差别。
在整体的AI技术发展上,必须承认,国外在理论基础和原创算法上依然有优势,毕竟起步时间早,信息革命的底子摆在那。不过令人欣慰的是,近几年国内学界和业界都在加速追赶,也取得了可喜的成绩。据《中国人工智能发展报告2020》显示,过去十年全球人工智能企业全球第二,人工智能专利申请量全球第一,有389571件,占全球总量的74.7% 。在AI风控、生物识别等领域在国际上已经处于领先水平。能取得这个成就,我认为原因有以下几点:
虽然中国AI技术起步晚,但基础原理的落后没有阻挡我国在AI技术应用上的探索。在努力追赶国外技术的同时,我们在某些细分领域可以说是做到了国际领先。允许我这里发明一个词,叫「技术包袱」,指的是依赖原有的技术,导致切换新技术成本高。由于我国金融起步晚,所以在技术的推广上,也存在所谓的「后发优势」,相比国外的银行,我国的金融机构会更乐意采用最新的AI技术,没有什么「技术包袱」。同理,我国移动支付发展得比国外好,也是因为信用卡发展时间短,新技术应用时的包袱少。毕竟在没有过多习惯积累的状态下直接采用最新技术,比起放弃原有的技术再用最新技术更容易。
前文提到我国在AI风控领域已经居于国际领先地位,并在反欺诈、金融风险管理等领域都发挥了很大效用。
你也许看到这里,还会有个疑问,那我国的AI风控技术具体都做出了什么成就?作为主导国际AI风控标准的企业,蚂蚁的技术比较有代表性,这里就拿蚂蚁的AI风控简单说说:
随着经济和科技水平发展,我们和发达国家技术差距正在缩小,甚至在例如AI风控这种细分领域能达到领先水平,影响力也逐步增强,甚至开始主导国际标准。但从整个AI领域来说,差距依然不小,吾辈切记不可自大,毕竟这种技术差距不是一年两年就能追上的。不过,随着技术飞快进步,未来应该会有更多的细分领域能达到国际领先水平。